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Abstract: Monoterpenes significantly affect air quality and climate as they participate in tropospheric
ozone formation, new particle formation (NPF), and growth through their oxidation products. Vege-
tation is responsible for most biogenic volatile organic compound (BVOC) emissions released into the
atmosphere, yet the contribution of shrub and regional transport to the ambient monoterpene mixing
ratios is not sufficiently documented. In this study, we present one-year systematic observations of
monoterpenes in the Eastern Mediterranean at a remote coastal site, affected mainly by the typical
phrygana vegetation found on the Island of Crete in Greece. A total of 345 air samples were collected
in absorption tubes and analyzed by a GC-FID system during three intensive campaigns (in spring
2014, summer 2014, and spring 2015) in addition to the systematic collection of one diurnal cycle
per week from October 2014 to April 2015. Limonene, α-pinene and 1,8-cineol have been detected.
The mixing ratios of α-pinene during spring and summer show a cycle that is typical for biogenic
compounds, with high levels during the night and early morning, followed by an abrupt decrease
around midday, which results from the strong photochemical depletion of this compound. Limonene
was the most abundant monoterpene, with average mixing ratios of 36.3± 66 ppt. The highest mixing
ratios were observed during autumn and spring, with a maximum mixing ratio in the early afternoon.
The spring and autumn maxima could be attributed to the seasonal behavior of vegetation growth
at Finokalia. The green period starts in late autumn when phrygana vegetation grows because of
the rainfall; the temperature is still high at this time, as Finokalia is located in the southeast part of
Europe. Statistical analyses of the observations showed that limonene and α-pinene have different
sources, and none of the studied monoterpenes is correlated with the anthropogenic sources. Finally,
the seasonality of the new particle formation (NPF) events and monoterpene mixing ratios show
similarities, with a maximum occurring in spring, indicating that monoterpenes may contribute to
the production of new particles.

Keywords: monoterpenes; east Mediterranean; gas phase; GC-FID; new particle formation

1. Introduction

Monoterpenes affect the oxidizing capacity of the atmosphere since they react rapidly
with the main oxidants of the troposphere, namely hydroxyl (OH), nitrate (NO3) radicals
and ozone (O3), and their oxidation contributes to tropospheric O3 formation when suffi-
cient amounts of nitrogen oxides are available [1,2]. Moreover, their low-volatility oxidation
products are involved in new particle formation (NPF) and growth processes [3–5]. O3 is
a greenhouse gas [6] and is phytotoxic [7], thus affecting human health [8]. Furthermore,
NPF and growth are found to increase cloud condensation nuclei by 29 to 77% in the East
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Mediterranean [9], having significant climate effects through their interactions with light
and clouds, and impacting human health. Air pollution from fine aerosols is estimated
to have led to 238,000 premature deaths in the European Union in 2020 [10]. In order
to evaluate the contribution of monoterpenes to these effects, the determination of their
atmospheric mixing ratios is needed.

Atmospheric monoterpenes have both natural and anthropogenic sources. The emis-
sions of atmospheric volatile organic compounds (VOCs) by vegetation, which is their
largest natural source [11], are ecologically important, as vegetation uses VOCs to protect
itself against high temperatures [12,13], high irradiance [14] and oxidative stress [15]. Fur-
thermore, VOCs act as plant-to-plant [16], plant-to-pollinator [17] and plant-to-herbivore
communication signals [15]. Even though the main sources of monoterpenes on a global
scale are natural, anthropogenic emissions can be the most important sources in urban areas.
They are related to vehicular exhausts [18], heating activities [19], volatile chemical products
use (e.g., cleaning products) [20], tree combustion [21] and industrial activities [22].

Monoterpenes have been measured with various offline and online analytical methods.
Atmospheric samples for the offline monoterpenes analysis were collected into sample
absorption tubes [23–28]. Then, they were analyzed in the laboratory by gas chromatog-
raphy coupled with flame ionization detector (GC–FID) or with a mass spectrometer
(GC–MS). The online methods used were proton-transfer-reaction mass spectrometry (PTR–
MS) [29–35], proton-transfer-reaction time-of-flight-mass spectrometry (PTR-ToF-MS) [36]
and the AirmoVOC (GC–FID) online analyzer [19,37]. Analysis of the monoterpenes by
using offline techniques enable good compound identification but lacks time resolution.
On the other hand, the PTR–MS and PTR-ToF-MS measurements cannot distinguish be-
tween compounds with the same mass and, therefore, cannot differentiate the individual
monoterpenes [38].

The measurements of the monoterpenes were performed in different environments,
such as forests [23–25,29–31,36,38,39], rural sites [26–28,32], coastal areas [35] and urban
areas [19,33,37,40].

The atmospheric lifetime of monoterpenes, due to their reaction with hydroxyl (OH)
radicals during the day, varies between 2.5 days (camphor) and 27 min (a-phellandrene)
(for 25 ◦C and 106 radical OH.cm−3) [41]. Therefore, monoterpenes present large temporal
and spatial variability in the atmosphere, which further supports the need to measure their
mixing ratios at different locations and during different periods of the year.

The Mediterranean Basin is among the most susceptible regions to climatic perturba-
tions worldwide and is expected to be greatly affected by global warming and weather-
related extreme events in the forthcoming decades [42]. The Basin is surrounded by land,
with most of the forested areas situated to the north and smaller vegetation towards the
south and on the islands, contributing to the VOC emissions in the Mediterranean atmo-
sphere. These emissions, in combination with the high photochemistry in the region and
the presence of nitrogen oxides, can elevate the O3 and, in the presence of sulfur dioxide,
can trigger NPF and growth. However, the VOC measurements in the Mediterranean
are limited in temporal and ecosystem coverage (mainly covering the forested areas) [43].
Furthermore, even if tree species are responsible for most monoterpenes’ emissions to the
atmosphere, the contribution of shrubs and regional transport to the atmospheric levels of
monoterpenes requires further investigation.

This study presents a full year of systematic atmospheric observations of monoterpenes
at a remote coastal site characterized by phrygana vegetation typical of Crete Island (Greece).
Monoterpenes were measured on a continuous basis in this region. The samples were
collected in absorption tubes from March 2014 to April 2015 and analyzed by a GC–FID
system. The seasonal and diurnal variability of monoterpenes and their correlation with
concurrent observations of other pollutants and NPF events observed at the same site
were determined.
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2. Materials and Methods
2.1. The Site

Monoterpenes measurements were performed at the northeast coast of the Island of
Crete at the atmospheric observatory of the University of Crete at Finokalia, Crete, Greece
(35◦20′ N, 25◦40′ E, 250 m a.s.l). The Finokalia station (http://finokalia.chemistry.uoc.gr/;
assessed on 16 February 2023) is part of the ACTRIS (Aerosols, Clouds, and Trace gases
Research Infrastructure) and the ICOS (Integrated Carbon Observation System) Networks
and is located 50 km away from Heraklion, the closest and largest city on the island.
Therefore, local anthropogenic sources have only a minor influence on the atmospheric
composition at the station. The location is covered by scrubs and phrygana vegetation
that is typical of Crete. The station has been operating since 1993, has hosted several
research campaigns and has been found to be representative of the Eastern Mediterranean
atmosphere [44–46].

2.2. Sample Collection

Air sampling was carried out from 13 March 2014 to 20 April 2015. During this period,
three intensive campaigns took place: the first was in spring 2014 (13 March to 8 April), the
second was in summer 2014 (16 June to 4 August), and the third was during March 2015.
During the 2014 campaign, the diurnal cycles were investigated by collecting 8 samples
per day with a one-hour collection time and three-hour intervals. During the March 2015
campaign, one midday and one nighttime sample was collected every day. In addition
to the campaigns, air samples were collected with a one-hour collection time every 3 h to
reconstruct one diurnal cycle per week from October 2014 to April 2015.

Stainless steel cartridges filled with Tenax TA 60/80 (Analytical Columns, Croydon,
England) were used as adsorption tubes for the offline sampling for a one-hour sampling
period under a 200 mL·min−1 air flow rate. The sampling was performed 3 m above ground
level. A mass flow controller and a pump were used during the sampling. As monoterpenes
are reactive to O3, O3 was removed from the sampled ambient air before analysis by the
use of an O3 scrubber. The scrubber was a small cartridge filled with potassium-iodide (KI)
that converts O3 to O2. The samples were then carried to the University of Crete and stored
at 4 ◦C until their analysis within two days.

2.3. Analytical Method

The analysis was based on the methods of TO-1 (Determination of Volatile Organic
Compounds in Ambient Air Using Tenax Adsorption and Gas Chromatography/Mass
Spectrometry GC/MS, Analytical Columns, Croydon, England) [47], and TO-17 (Deter-
mination of Volatile Organic Compounds in Ambient Air Using Sampling onto Sorbent
Tubes) [48] by the US Environmental Protection Agency (EPA).

The analytical system comprised a thermal desorber (TurboMatrix 100 TD Single
Tube, Perkin-Elmer Life and Analytical Sciences, Shelton, CT, USA) connected to a GC–FID
system (Hewlett-Packard 5890, Wilmington, DE, USA). The thermal desorber was used to
pre-concentrate the air samples collected in the adsorption tubes before injecting them into
the GC–FID. For this, the absorption tubes with the air samples were heated at 300 ◦C for
15 min (primary desorption) and transferred by a flow of helium at a rate of 50 mL·min−1

into a cryogenic trap filled with Tenax TA and cooled at −30 ◦C. The thus pre-concentrated
monoterpenes were released from the Tenax TA trap by heating it at 320 ◦C for 5 min
under the same helium (carrier gas) flow rate. Analytes were transferred from the ther-
mal desorber to the gas chromatography system by the carrier gas through the capillary
column situated inside the fused silica heated transfer line, which connects the thermal
desorber to the GC system. The preconcentration trap was reconditioned after each sample
injection. The analysis was performed by the GC coupled with an FID. The separation of
analytes took place with a capillary column: Rtx-1, 100% crossbond dimethyl polysiloxane
(60 m × 0.53 mm ID × 3.0 µm df) (Restek Corporation, Bellefonte, PA, USA) using the
following GC oven temperature program: 100 ◦C for 0.2 min, first ramp to 136 ◦C with

http://finokalia.chemistry.uoc.gr/
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1 ◦C·min−1, second ramp to 230 ◦C with 10 ◦C·min−1, isothermal at 230◦ for 6 min. The FID
operated at 260 ◦C with a H2 flow rate of 35 mL·min−1 and an airflow rate of 300 mL·min−1.
Monoterpenes’ identification was archived using an air standard that contains 38 VOCs, of
which 8 are monoterpenes (α-pinene, myrcene, 3-carene, cis-ocimene, p-cymene, limonene,
1,8-cineol, camphor). The standard was provided by the Deutscher Wetterdienst Meteo-
rologisches Observatorium within the framework of the ACTRIS network. To obtain the
identification of each monoterpene, a very small quantity of liquid-known monoterpene
was injected into the air standard. Myrcene, 3-carene, cis-ocimene and camphor were not
found in our samples, while p-cymene was not firmly identified; thus, it was not included
in the analysis.

The precision of the analysis was derived as the percentage coefficient of variation
of the results of six consecutive analyses of the air standard and was found to be 2–4%.
The detection limit of each monoterpene (LOD) was reported as three times the standard
deviation of the field blanks and was 1.8, 2.3 and 5.3 ppt for α-pinene, limonene and
1,8-cineol, respectively. The stability of the sample was investigated by the analysis of an
air standard one week after trapping it in the adsorption tube and was expressed by the
coefficient of variation of the consecutive analyses, which was calculated to be 2–5%.

2.4. Auxiliary Observations

For the auxiliary measurements of gases and aerosols, air samples were collected
on filters by following the sampling method presented by Tzitzikalaki et al. [49]. Glass
fiber filters (GFF, 0.7 µm, 47 mm, Whatman International Ltd., Maidstone, UK) were used
for trapping gas-phase compounds, and polytetrafluoroethylene (PTFE) filters (Zefluo-
rTM 2.0 µm, 47 mm, Pall Corporation, Ann Arbor, MI, USA) were used for trapping
particulate ions (Ca++, Mg++, K+, Na+, NH4

+, SO4
=, Cl−, C2O4

= and NO3
−). Specifically,

H3PO4-impregnated GFF filters were used for the determination of NH3, and GFF filters
impregnated with a solution of sodium carbonate/glycerol were used for the determination
of SO2, HCl and HNO3 concentrations. The filters were extracted with ultrapure water in
an ultrasonic bath.

Analyses of all major anions and cations were performed according to the established
procedures of the Environmental Chemical Processes Laboratory of the University of
Crete [50]. The details of the ion chromatography system are presented in the work of
Tzitzikalaki et al. [49]. The extracts of the GFF filters were analyzed as NH4

+ (for NH3),
and SO4

= and NO3
− (for SO2 and HNO3). The concentrations of NH3, SO2 and HNO3

were then determined by subtracting the NH4
+, SO4

=, and NO3
− concentrations measured

in the GFF extracts from those measured in the PTFE extracts. Amines were sampled on
GFF filters and analyzed as detailed by Tzitzikalaki et al. [49].

The number size distribution of the submicron atmospheric particles was recorded
every five minutes using a scanning mobility particle sizer (SMPS) that was custom–built by
the Leibniz Institute for Tropospheric Research (TROPOS, Leipzig, Germany). The observed
9–848 nm particle size distributions were then used for the identification of NPF events in
the region, based on the Dal Maso et al. [51] methodology as explained in Kalivitis et al. [46].

The above-described measurements of auxiliary trace gases and aerosol ions concen-
trations, as well as the number size distribution of aerosol particles, were used together
with the monoterpenes’ mixing ratios in the statistical analysis. Investigating monoter-
penes sources affecting their levels was performed by conducting a factor analysis using
a multivariate exploratory technique and the IBM SPSS v29.0 software. The results are
discussed in Section 3.3.

3. Results and Discussion
3.1. Monoterpene Concentrations and Seasonality

Systematic monoterpene observations in Eastern Mediterranean over a 13-month
period, performed at the Finokalia observatory, are presented as follows. As summarized
in Table 1, only 65% and 76% of the analyzed air samples had mixing ratios above the LOD
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for α-pinene and limonene, respectively. The mixing ratios of 1,8-cineol were found to be
close to the LOD and thus were detected in about 23% of the samples.

Table 1. Total number of samples, number of samples with monoterpene mixing ratios above
LOD, average monoterpene mixing ratio (in ppt), LOD and maximum measured mixing ratios for
each monoterpene.

α-Pinene Limonene 1,8-Cineol

Number of samples 345 345 345
Number of samples above LOD 223 263 78

Average mixing ratio (ppt) 6.1 ± 2.5 36.3 ± 66.1 16.3 ± 17.7
LOD (ppt) 1.8 2.3 5.3

Maximum value (ppt) 110.4 332.9 380.3

The most abundant monoterpene was found to be limonene throughout the whole
period, with average mixing ratios of 36.3± 66.1 ppt. The average mixing ratios of 1,8-cineol
and α-pinene were 16.3 ± 17.7 and 6.1 ± 2.5 ppt, respectively.

Table 2 compares the results of the present study with observations under various
environmental conditions. Cerqueira et al. [26] reported the highest mixing ratios of α-
pinene during the night for both rural sites of Portugal, of 600 ppt at Tabua and 460 ppt at
Anadia. High mixing ratios of α-pinene were detected in urban areas, with annual mean
mixing ratios in Athens of 125.9 ppt [19] in 2017 and up to 58 ppt in Helsinki during the
summer of 2009 [52]. These values are about three orders of magnitude higher than those
measured at Finokalia, which correspond to the lowest values that have been reported.
Observations of α-pinene at Finokalia are also an order of magnitude smaller than the
observations at Corsica [53] and Cyprus [54,55] and almost two orders of magnitude smaller
than the observations affected by forested areas [35,56].

The monthly averages of monoterpene observations at Finokalia during the period
13 April 2014 to 20 April 2015 are shown in Figure 1. The mixing ratios of α-pinene
(Figure 1b) show an annual variability with the winter/early spring maxima (January and
March) and an opposite temperature (Figure 1a) and solar radiation (Figure 1b) variability.
Most of the earlier reported studies (Table 2) showed a summer maximum for α-pinene,
indicating biogenic sources. This is not the case for the Hyytiälä boreal forest, where higher
mean mixing ratios of α-pinene were reported in autumn than in summer during the years
2000–2003 [23,24]. However, measurements at the same location during a recent study
showed a summer maximum [38].

Limonene exhibits different behavior compared to α-pinene (Figure 1a) following
the temperature and solar radiation variability, except in June/July/August when the
temperature is high and the relative humidity is low. The mixing ratios of limonene at
Finokalia are in consonance with the worldwide observations listed in Table 2 and the mean
mixing ratio of these studies. However, the measurements in Portugal [26] and in a tropical
forest [57] are two times higher than in Finokalia. The limonene observations at a Finnish
boreal forest [23,24,38], varying from the LOD to 22 ppt, are lower than the observations at
Finokalia. The limonene observations at Finokalia are of the same order of magnitude as
the reported values for Corsica [57] and Cyprus [27] but are significantly lower than those
observed in a temperate forest in Greece [56]. The limonene mixing ratios show a seasonal
maximum during October with a mean value of 83.6 ppt. A secondary seasonal maximum
can be seen during May, with a mean of 54.4 ppt. Ref. [58] reported that limonene was
slightly more important in winter than summer in a suburban environment. Similarly,
measurements in urban areas showed higher mixing ratios in winter than in summer for
pinenes, which is potentially attributed to the anthropogenic sources of monoterpenes,
such as traffic and wood combustion [19]. Ref. [52] observed that limonene in Helsinki was
just as high in winter and autumn and higher in summer.
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Figure 1. Monthly average mixing ratios (in ppt) of (a) limonene and (b) α-pinene at Finokalia station
from March 2014 to April 2015. Whiskers represent the 5th and 95th percentiles, box edges are the
25th and 75th percentiles, the line in the box is the median, the square is the mean of the reported
values, and the mixing ratio is in ppt. The meteorological parameters (temperature, relative humidity,
wind speed and radiation), averaged over the days of the samplings, are also depicted.
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Table 2. Comparison of this work with those reported in the literature: α-pinene, limonene and 1,8-cineol observations in different environments (with standard
deviation when available) (mixing ratios in ppt). bdl: below detection limit.

Location Type Period Method Time α-Pinene Limonene 1,8-Cineol Reference

Anadia, Portugal Rural
12 & 24

August 1996 GC-FID
day 180 40 110 Cerqueira

et al. [26]night 460 73 270

Tábua, Portugal Rural
12 & 24

August 1996 GC-FID
day 190 30 260 Cerqueira

et al. [26]night 600 47 420
Peyrusse-Vieille,

France Rural
February–March
& June–July 2009 GC-FID-MS

winter 16 30 - Detournay
et al. [27]summer 102 20

Peyrusse-Vieille,
France Rural June–July 2009 GC-FID-MS 9-363 LOD-66 - Detournay

et al. [28]

Hyytiälä, Finland Boreal forest April 2000–April 2002 GC-MS

winter 48 ± 46 bdl bdl
Hakola

et al. [23]
spring 62 ± 91 bdl bdl

summer 104 ± 54 13 ± 10 16 ± 13
autumn 109 ± 88 13 ± 14 bdl

Hyytiälä, Finland Boreal forest 2000–2003 GC-MS

winter 52 0 2
Hakola

et al. [24]
spring 69 0 1

summer 107 0 24
autumn 110 3 1

Hyytiälä, Finland Boreal forest October 2010–October
2011

GC-MS

winter day 6 2 1

Hakola
et al. [38]

winter afternoon 5 3 1
spring day 32 2 2

spring afternoon 3 1 1
summer day 189 22 9

summer afternoon 71 7 12
autumn day 38 4 2

autumn afternoon 23 3 2

Helsinki, Finland Urban 2009 GC-MS

winter 15 8 1
Hellén

et al. [52]
spring 17 3 2

summer 58 11 8
autumn 13 8 3

Borneo, Malaysian Tropical forest April–May & June-July
2008 GC-FID 24 71 Jones

et al. [57]

Amazonas, Brazil Tropical forest October 2015 GC-FID
day 330 ± 40 180 ± 90 Yáñez-Serrano

et al. [59]night 150 ± 50 180 ± 100

Athens, Greece Urban February 2016–February
2017

GC-FID
winter 120.5 ± 163.7 86.3 ± 190.6 - Panopoulou

et al. [19]summer 125.9 ± 118.7 27.0 ± 55.8
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Table 2. Cont.

Location Type Period Method Time α-Pinene Limonene 1,8-Cineol Reference

Paris, France Suburban
July 2009 &

January–February 2010 GC-FID-MS
winter 20 ± 52 15 ± 19 W. Ait-Helal

et al. [58]summer 48 ± 45 16 ± 16
Italy,

Castelporziano Rural May–June 2007 PRT-MS 130–300
(monoterpenes)

Davinson
et al. [35]

Greece, Pertouli Temperate forest July–August 1997 GC-FID summer ≤2000 ≤1500 ≤500 Harrison
et al. [56]

Corsica Coastal June 2012–June 2014 GC-FID

Annual 68.3 ± 109.7 34.2 ± 54.0

Debevec
et al. [53]

winter 18.0 ± 18.0 18.0 ± 18.0
spring 54.0 ± 161.9 18.0 ± 71.9

summer 125.9 ± 89.9 71.9 ± 36.0
autumn 89.9 ± 89.9 54.0 ± 54.0

Cyprus Background rural March 2015 GC-FID winter 59.3 Debevec
et al. [54]

Cyprus Forests and
Macchia March 2015 GC-FID 24 h 58 ± 131 27 Debevec

et al. [55]

Finokalia, Crete,
Greece

Coastal
March 2014–April 2025

GC-FID

winter 7.5 ± 3.4 31.4 ± 37.9 11.5 ± 9

This studyspring 7.0 ± 9.8 33.3 ± 60.6 20.8 ± 21.6

March 2014–April 2025 summer 2.4 ± 3.0 24.1 ± 31.2 bdl
autumn 5.1 ± 7.2 54.4 ± 41.2 bdl
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At Finokalia, 1,8-cineol was detected only from January to March 2015 (mean of
16.3 ± 17.7 ppt), while it was below the LOD during the rest of the year. The mean value of
1,8-cineol compares well with the urban measurements at Helsinki in Finland [52] during
winter and spring, when accounting that only 23% of the samples were containing 1,8-
cineol above the LOD at Finokalia. The observations at the boreal forest in Finland are
of the same order of magnitude as those in urban locations [24,38]. On the contrary, the
measurements in Portugal during summer were comparing too high [26] and, together
with those reported for the temperate forest in Greece [56], are the highest reported values.

Considering Finokalia’s location on a remote coast, with the nearest city being 50 km
away, these data suggest that monoterpenes could originate from distant regional sources.
Thus, further analysis of how the air mass origin influences the monoterpene concentrations
is presented in Section 3.4. The lower values of monoterpenes at Finokalia in summer,
compared to the other seasons, could also be attributed to stronger sinks in summer since
OH radicals, which are mainly formed from the photolysis of O3 followed by the reaction
of O1D with water vapor, are lower in winter when photochemical activity is low. Another
reason for the high autumn and winter values is the seasonality of vegetation at Finokalia.
The weather on the Island of Crete is characterized by two seasons: the wet season from
October to March and the dry season from April to September. The wet season coincides
with the green period at Finokalia; they both start in late autumn. During this period,
phrygana vegetation grows because of the rainfall while the temperature is still high, as
Finokalia is located in the southeast Mediterranean.

3.2. Monoterpene Diurnal Cycles

The diurnal patterns of the measured monoterpenes are presented in Figure 2. Con-
cerning limonene, the highest mixing ratios were observed during autumn, with a diurnal
magnitude of about 65 ppt (Figure 2a). For the following discussion, data are presented as a
function of local wintertime, that is, UTC + 2. In autumn, high mixing ratios were observed
in the afternoon, and a secondary morning maximum can be seen from 8:00 to 10:00. In
winter, the diurnal variability is not that clear due to the low mixing ratios in the afternoon
(around 17:00) and high mixing ratios in the early and late afternoon. Thus, during winter,
a diurnal cycle with two maxima, one around 15:00 and the second in the evening (20:00 to
22:00), was generally observed. However, this is not the case for summer and spring when
no specific diurnal circle was observed.

For α-pinene, different diurnal patterns to those of limonene are observed (Figure 2b).
During autumn, a clear diurnal cycle was seen with two maxima, the first one in the early
morning (6:00 to 7:00) and the second one around noon (~12:00). This is not the case for
winter, when only one maximum can be seen in the morning (9:00 to 10:00). During both
spring and summer, the α-pinene mixing ratios present a clear diurnal variability, with an
early morning maximum followed by an early afternoon minimum, reflecting the daytime
oxidation of this monoterpene. Concerning 1,8-cineol, the mixing ratios that were detected
above the LOD and observed from January to March 2015 do not show any clear variability.

The spring and summer diurnal patterns of α-pinene are similar to a typical cycle
for biogenic compounds, with high levels at the beginning of the night and in the early
morning, followed by an abrupt decrease around midday and a sharp increase again in the
evening. High levels of monoterpenes are observed in the morning due to temperature-
dependent emissions, which result in high emissions before the intense photochemical
depletion processes occur (Figure 3). As shown in Figure 3a, the temperature is the
highest in summer when relative humidity is the lowest (Figure 3c) and increases with
increasing radiation (Figure 3b) in all seasons. During the day, the oxidizing capacity of
the atmosphere is higher than during the night; therefore, the depletion processes surpass
emission, leading to a rapid decline of monoterpene mixing ratios. Minimum mixing ratios
coincide with the maximum photochemical activities. Regarding the nighttime increases,
significant monoterpene emissions can still occur during the night, while the depletion
of monoterpenes by chemical reactions with OH and O3, which maximize at noon and in
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the afternoon, respectively, declines when daylight and wind speeds are low. Changes in
the height of the planetary boundary layer (PBL) at Finokalia station could not explain the
limonene increase during the night, as the PBL at this site was observed to be dominated
by coastal flows rather than thermal convection [60].
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3.3. Factor Analysis-Source Identification

The exploration of potential sources of the observed monoterpenes in the region was
performed based on a factor analysis that considers monoterpene observations together
with the auxiliary measurements of other chemical parameters at Finokalia station (Table 3).
No correlation was found with the meteorological parameters shown in Figure 3. In
particular, Na+, NH4

+, Mg++, Cl−, NO3
−, SO4

=, K+, Ca++ and C2O4
= ions in the particulate

phase and NH3, SO2, HCl and HNO3 in the gas phase were considered. Four-hour data
were used in a varimax-rotated factor analysis since the monoterpene mixing ratios were
averaged to the 4 h periods of the auxiliary observations. No 1,8-cineol was included in
our analysis since its mixing ratios were close to the LOD, and only a few samples were
detected above the LOD from January to March 2015. Five common factors were found
to be able to explain 85% of the total variance of the system (Table 3). Factor 1 is highly
correlated with HCl, SO2, NO3

−, SO4
=, C2O4

=, NH4
+ and K+, which have an anthropogenic

origin. This factor explains 35.5% of the total variance. Factor 2 is associated with Na+, Cl−,
and Mg++, which are typical components of seawater and describe 23.9% of the system’s
variability. Limonene has common sources with NH3, as these species are associated with
Factor 3, which can reproduce 10.8% of the system’s variance. In Factor 4, which explains
8.2% of the total variance, α-pinene is associated with HNO3, suggesting that they have
common sources. However, a source attribution of Factor 4 is difficult and could benefit
from additional auxiliary observations. Finally, Ca++ is the only compound associated with
Factor 5, which accounts for an additional 6.1% of the system’s variance.
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Table 3. Varimax-rotated factor matrix resulting from the factor analysis showing the correlations
between atmospheric chemical components and factors.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Limonene 0.721
α-pinene 0.862

NH3 0.820
HCl 0.881

HNO3 0.726
SO2 0.875
Cl− 0.966

NO3
− 0.842

nssSO4
= 0.893

C2O4
= 0.643

Na+ 0.965
NH4

+ 0.925
nssK+ 0.840
Mg++ 0.948

nssCa++ 0.940
Variance explained% 35.5 23.9 10.8 8.2 6.1
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The factor analysis showed that limonene and α-pinene have different sources in the
region, while none of the observed monoterpenes was associated with the anthropogenic
factor (Factor 1) nor the marine factor (Factor 2). Finokalia’s remote coastal location
suggests that the station is subject to long-range transport of atmospheric constituents.
The fact that monoterpenes are not related to Factor 1 (anthropogenic factor) shows that
monoterpenes’ sources are local and are not related to the long-range transport of pollutants
from urban environments.

The limonene and NH3 correlation with Factor 3 supports the existence of common
sources of these compounds, most probably associated with the agricultural activities in
the region. Such sources are known as major contributors (85–98%) to the NH3 emissions
in the atmosphere [61].

3.4. Air Mass Back Trajectories Analysis

Air mass back-trajectory analysis was performed to investigate how the air mass origin
influences the monoterpene mixing ratios. For this, five-day back-trajectories, arriving at
Finokalia station at 1000 m a.s.l, were calculated by the HYSPLIT model (Hybrid Single-
Particle Lagrangian Integrated Trajectory model) [62], following the methodology described
in [44]. This height was chosen to avoid interferences in the calculations of the origin of the
air masses by the orography of the island. To classify the back trajectories, we have defined
and used eight sectors of air mass origin. The frequency of occurrence of the air mass
origins for the analyzed samples was as follows: northern (N) (100 samples), northeastern
(NE) (64 samples) and southwestern (SW) (54 samples). western (W), northwestern (NW),
southern (S) and southeastern (SE) wind directions were observed only for 24, 23, 29 and
8 samples, respectively; no air mass of east (E) origin was sampled (Table 4).

Table 4. Average monoterpene mixing ratios (standard deviation in parentheses) for each air mass
sector; n is the number of samples per sector. The two largest mean mixing ratios are marked in bold.

Air Mass Origin n α-Pinene Limonene 1,8-Cineol

Mixed 43 6.5 (3.2) 45.6 (32.9) 21.3 (22.3)
N 100 5.2(3.2) 30.9 (30.6) 10.2 (12.8)

NE 64 8.0 (7.5) 42.0 (49.2) 12.3 (18.3)
SW 54 5.4 (2.1) 46.2 (51.4) 11.8 (13.2)
W 24 6.7 (3.9) 15.7 (11.7) 22.4 (24.0)

NW 23 4.5 (3.0) 35.3 (47.0) 12.7 (10.7)
S 29 7.8(1.3) 25.3 (16.3) 6.2 (1.8)

SE 8 3.9 8.4 5.3

The limonene and α-pinene mixing ratios were the highest in the air masses originating
from the SW and NE and the lowest in the air masses originating from the SE. On the
contrary, the 1,8-cineol maximum values were observed in W air masses (Table 4). Precisely,
the average limonene mixing ratios equal to 46.2 ± 51.4 ppt, 42.0 ± 49.2 ppt, 35.3 ± 47 ppt,
30.9± 30.6 ppt and 25.3± 16.3 ppt were determined in the SW, NE, NW, N and S air masses,
respectively. Limonene’s lowest values of 8.4 ppt were observed in the SE air masses. The
mixing ratios of α-pinene were 8.0 ± 7.5 ppt, 7.8 ± 1.3 ppt, 6.7 ± 3.9 ppt, 5.4 ± 2.1 ppt,
5.2 ± 3.2 ppt and 4.5 ± 3.0 ppt for the NE, S, W, SW, N and NW air masses, respectively.
Both limonene and α-pinene show low mixing ratios in the W air masses in contrast to
1,8-cineol, which shows its maximum mixing ratios equal to 22.4 ± 24.0 in the W air masses.
For the rest of the wind sectors, the 1,8-cineol average mixing ratios are quite similar, with
12.7 ± 10.7 ppt, 12.3 ± 18.3 ppt, 11.8 ± 13.2 ppt, 10.2 ± 12.8 ppt and 6.2 ± 1.8 ppt for the
NW, NE, SW, N and S wind directions, respectively. The large variability of monoterpene
mixing ratios within each sector, depicted by the standard deviation of the observations,
prohibits any firm conclusion.
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3.5. Monoterpenes and NPF

The potential participation of monoterpenes in nucleation events in our region has
been investigated based on the NPF events at Finokalia (Figure 4) and identified the
following [51] based on the measured aerosol particle size distributions from 13 March 2014
to 20 April 2015. Days were classified as ‘NPF event days’ when a new nucleation mode
followed by growth to larger diameters was clearly observed after manual inspection [46].
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Most NPF events were observed in spring (May) and fall (September). As pointed
out earlier, limonene’s seasonality clearly shows a seasonal maximum in October and
a secondary seasonal maximum in May. This suggests the potential existence of a link
between the NPF events and the high limonene mixing ratios in May, and thus that limonene
may contribute to the production of new particles. Regarding the seasonal maximum of
the NPF events in September, the lack of monoterpene measurements in this month does
not allow for a comparison with them and requires further investigation.

4. Conclusions

A one-year-long observation of monoterpenes in the Eastern Mediterranean at Fi-
nokalia is presented here. The station is a remote coastal site characterized mainly by the
typical phrygana vegetation of Crete, where shrubs and degraded macchia-type vegetation
dominate the landscape. A total of 345 samples were collected from March 2014 to April
2015 during three intensive campaigns and a systematic collection of one diurnal cycle
per week. Air samples were collected in absorption tubes and analyzed offline using a
GC–FID system.

The most abundant monoterpene was limonene, with its highest mixing ratios ob-
served in spring and autumn in contrast to the earlier reported studies that showed a
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summer maximum indicative of biogenic sources. Similarly, the mixing ratios of α-pinene
were maximized in winter and spring and minimized in summer. These differences could
be due to (i) a stronger photochemical sink in summer and (ii) the different vegetation
seasonal cycle with the green period at Finokalia starting in late autumn.

A clear diurnal cycle of α-pinene was observed during spring and summer, with a
minimum around noon that reflected its photochemical loss. This diurnal pattern is quite
typical for biogenic compounds where minimum mixing ratios coincide with maximum
photochemical activity. However, in our study, the monoterpene mixing ratios did not
statistically correlate with the meteorological parameters.

The factor analysis showed that limonene and α-pinene have different sources and
suggested that none of the studied monoterpenes correlates with the anthropogenic sources.
No clear dependence of monoterpene mixing ratios on air mass origin was found. Further-
more, a similarity was detected between the seasonality of the limonene mixing ratios and
NPF events’ frequency of occurrence with maxima during spring, indicating that limonene
may contribute to the NPF procedure. However, the lack of measurements of monoterpene
mixing ratios in September, when the NPF events occurrence presents a second maximum,
does not allow us to draw an overall conclusion and further investigation is needed. This
paper presented offline measurements that demonstrated the presence of monoterpenes in
the remote background atmosphere of the Eastern Mediterranean and the need for new
continuous online simultaneous observations of monoterpenes and aerosol size distribution
in the region. Such observations are ongoing and will provide more robust information on
the involvement of these organics in aerosol formation and growth.
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