THE GREENHOUSE GAS PROJECT OF ESA’S CLIMATE CHANGE INITIATIVE (GHG-CCI): PHASE 2 ACHIEVEMENTS AND FUTURE PLANS

1. Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany, E-mail: Michael.Buchwitz@iup.physik.uni-bremen.de
2. University of Leicester, Leicester, United Kingdom
3. SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
4. European Commission Joint Research Centre (EC-JRC), Institute for Environment and Sustainability (IES), Air and Climate Unit, Ispra, Italy
5. Laboratoire de Météorologie Dynamique (LMD), Palaiseau, France
6. Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
7. Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
8. Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette, France
9. University of Edinburgh, Edinburgh, United Kingdom (UK)
10. Belgian Institute for Space Aeronomy (BIRA), Brussels, Belgium
11. Jet Propulsion Laboratory (JPL), Pasadena, California, United States of America
12. The Inversion Lab, Hamburg, Germany
13. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
14. Max-Planck-Institute für Biogeochemie (MPI-BGC), Jena, Germany
15. Lund University, Lund, Sweden
16. European Space Agency (ESA), ESRIN, Frascati, Italy

1. INTRODUCTION

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas responsible for global warming (IPCC, 2013). Despite its importance, our knowledge of the CO2 sources and sinks is inadequate and does not meet the needs for attribution, mitigation and the accurate prediction of future change (e.g., Ciais et al., 2010, 2014; Canadell et al., 2010; IPCC, 2013; CEOS, 2014), and despite efforts to reduce CO2 emissions, atmospheric CO2 continues to increase with approximately 2 ppm/year (Fig. 1; Le Quéré et al., 2014). Appropriate knowledge about the CO2 sources and sinks is needed for reliable prediction of the future climate of our planet (IPCC, 2013). This is also true for methane (CH4; e.g., IPCC, 2013; Kirschke et al., 2013). The goal of the GHG-CCI project (Buchwitz et al., 2015a), which is one of several projects of ESA’s Climate Change Initiative (CCI, Hollmann et al., 2013), is to generate global satellite-derived CO2 and CH4 data sets as needed to improve our understanding of the regional sources and sinks of these important atmospheric gases. Global near-surface-sensitive satellite observations of CO2 and CH4, i.e., XCO2 and XCH4, starting with the launch of ESA’s ENVISAT satellite. These products are currently retrieved from SCIAMACHY/ENVISAT (2002-2012) and TANSO-FTS/GOSAT (2009-today) nadir mode observations in the near-infrared/shortwave-infrared spectral region. In addition, other sensors (e.g., IASI and MIPAS) are also considered and in the future also data from other satellites. The GHG-CCI data products and related documentation are freely available via the GHG-CCI website. Here we present an overview about the latest data set (Climate Research Data Package No. 2 (CRDP#2)) focusing on the GHG-CCI core products and present a short overview about GHG-CCI-related achievements in terms of scientific publications.
Figure 1 (a) shows Northern Hemispheric XCO₂, i.e., the column-averaged CO₂ dry air mole fraction (in ppm), as retrieved from SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT using four different GHG-CCI retrieval algorithms (see Sect. 2). Clearly visible is the CO₂ seasonal cycle - primarily caused by uptake and release of CO₂ by the terrestrial biosphere - and the atmospheric CO₂ increase with time, which is primarily caused by burning of fossil fuels (fraction not taken up by the terrestrial biosphere or the oceans). Also visible is the good agreement of the different GHG-CCI CRDP#2 XCO₂ data products. Perfect agreement is not expected due to different spatio-temporal sampling and different altitude sensitivities (averaging kernels). Corresponding XCO₂ and XCH₄ maps are shown in Fig. 1 (b).

Currently multi-year measurements from two satellite instruments can be used to retrieve information on CO₂ and CH₄ with sufficient near-surface-sensitivity: SCIAMACHY on ENVISAT (2002 - April 2012) (Burrows et al., 1995; Bovensmann et al., 1999) and TANSO-FTS on-board GOSAT (launched in 2009) (Kuze et al., 2009). Both instruments perform (or have performed) nadir observations in the near-infrared/short-wave-infrared (NIR/SWIR) spectral region covering the relevant absorption bands of CO₂, CH₄ and O₂ (needed to obtain the “dry-air column” used to compute GHG column-averaged dry-air mole fractions, i.e., XCO₂ (in ppm) and XCH₄ (in ppb)). These two instruments are therefore currently the two main sensors used within GHG-CCI. The corresponding retrieval algorithms are referred to as “ECV Core Algorithms” (ECAs) within GHG-CCI.

In addition, a number of other sensors are also used within GHG-CCI (e.g., MIPAS/ENVISAT and IASI/MetOp-A) as they provide additional constraints for atmospheric layers above the planetary boundary layer. The corresponding retrieval algorithms are referred to as “Additional Constraints Algorithms” (ACAs) within GHG-CCI.

Even moderate to strong CO₂ and CH₄ sources and sinks only result in quite small changes of the column-averaged mole fractions relative to their background concentration. High relative accuracy of the satellite retrievals is required because even very small (regional) biases can lead to significant errors of the inferred surface fluxes. One of the first activities within GHG-CCI was to establish the user requirements, e.g., in terms of required accuracy and precision of the different data products. The result of this activity was the initial version of the GHG-CCI User Requirements Document (URD) (Buchwitz et al., 2011), which has recently been updated (Chevallier et al., 2014b). Note that the GHG-CCI URD requirements are more detailed and often also more demanding compared to the GCOS requirements (GCOS, 2011).

The GHG-CCI data products and related documentation are freely available via the GHG-CCI website and yearly updates generated with improved retrieval algorithms and covering (where possible) longer time series are foreseen.

Here we present an overview about the latest data set - Climate Research Data Package No. 2 (CRDP#2) (Sect. 2) - and shortly summarize some key scientific achievements (Sect. 3). For the latter however we primarily have to limit ourselves to the presentation of a list of scientific publications where the GHG-CCI CO₂ and CH₄ data sets have been used to improve our understanding of the natural and anthropogenic sources and sinks of these important greenhouse gases. We also shortly mention ongoing activities and future plans (Sect. 4).

2. CLIMATE RESEARCH DATA PACKAGE 2 (CRDP#2)

In this section, we present an overview about the GHG-CCI CRDP#2. CRDP#2 consists of several satellite-derived CO₂ and CH₄ data products and related documentation (freely available from http://www.esa-ggh-cci.org -> CRDP (Data)). Via the GHG-CCI website also the previous data set CRDP#1 and related documentation is available. Note that for CRDP#2 an improved data format has been defined focusing on harmonization of the ECA products (Buchwitz et al., 2014).

An overview about the various satellite-derived data products stored in the CRDP#2 data base is shown in Tab. 1, providing a general overview for ECA and ACA products, and Tab. 2, providing details on ECA products.
Table 2 lists the GHG-CCI ECV core data products XCO₂ and XCH₄ as retrieved from SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT. Note that more details for each product are available on the GHG-CCI website including spatio-temporal coverage, detailed documentation (e.g., Algorithm Theoretical Basis Documents (ATBDs)), point of contact information, information on data access, figures, etc.

As can be seen from Tab. 2, the XCH₄ algorithms for baseline product for all products (see Tab. 2). The other products are called “alternative products”. Note that the quality of an alternative product may be (at least on average) equivalent to the corresponding baseline product. Typically different methods have different strengths and weaknesses and therefore which product to use for a given application is expected to depend on the application. For our products we found (typically quite) small but potentially still significant differences between the baseline and the alternative products but have not yet always been able to clearly identify which of the products is better (e.g., due to the limited number of ground-based validation sites). For this reason we have not yet defined a baseline product for all products (see Tab. 2).

As can also be seen from Tab. 2, the XCH₄ algorithms / products are typically classified as “Full Physics” (FP) or “Proxy” (PR). The PR algorithms are using simultaneously retrieved CO₂ columns and model CO₂ columns to convert the retrieved methane columns (in molecules/area) to XCH₄ (in ppb), whereas the FP algorithms do not rely on modelled CO₂. The advantage of the PR algorithms is that scattering related errors (due to aerosols and clouds) cancel to a large extent when computing the CH₄ to CO₂ column ratio. As a consequence, the PR algorithms are typically simpler and faster and typically deliver a larger number of quality filtered (i.e., “good”) observations. See, e.g., Schepers et al., 2012, for a discussion of XCH₄ FP and PR methods.

Note that we have also generated a merged XCO₂ product via the EMMA algorithm (Reuter et al., 2013) by combining the individual SCIAMACHY and GOSAT XCO₂ products. Currently however the EMMA CRDP#2 product covers only a limited time period (see Tabs. 1 and 2). However, also a recently updated product (EMMA v2.0) is available via the GHG-CCI website covering 4 years. Within GHG-CCI the EMMA XCO₂ product is also used as a comparison tool for the individual products.

In line with the GHG-CCI user requirements (Chevallier et al., 2014b) the GHG-CCI ECA data products listed in Tab. 2 are (non-gridded) Level 2 products, i.e., they contain XCO₂ and XCH₄ values for each single observation along with information on time and location, uncertainty, quality flag, etc. (see Buchwitz et al., 2014, for details). Validation results for CRDP#2 are reported in the “Product Validation and Intercomparison Report, version 3.2” (PVIRv3.2, Buchwitz et al., 2015b, see also Tab. 3) and initial user assessments as carried out by the GHG-CCI Climate Reserch Group (CRG) are reported in the “Climate Assessment Report, version 2” (CARv2, Chevallier et al., 2015). These documents are updates of the corresponding CRDP#1 documents PVIRv2.0 (Notholt et al., 2013) and CARv1.1 (Chevallier et al., 2013).

3. OVERVIEW GHG-CCI SCIENTIFIC ACHIEVEMENTS

The GHG-CCI data products of CRDP#1 and CRDP#2 have been used to address a number of scientific carbon and climate issues as can be seen from section REFERENCES (note that all GHG-CCI-related publications are marked with (*)). A detailed overview on all GHG-CCI peer-reviewed publications (available until March 2015) is given in Buchwitz et al., 2015c, which is also available from the GHG-CCI website. As can be seen from section REFERENCES in total 38 peer-reviewed publications exist (May 2015), where GHG-CCI funding has been explicitly acknowledged. The list of all GHG-CCI publications is available via the GHG-CCI website (http://www.esa-ghg-cci.org -> Publications), where also links to the publications are given. Please visit this website for the most up-to-date list of all GHG-CCI publications. Here we would like to highlight only two publications:

Reuter et al., 2014a, used an ensemble of satellite XCO₂ data products and a new inversion method to quantify the strength of the European carbon sink. Their results indicate that this sink is likely larger than hitherto known. See also the related ESA webstory “Is Europe an underestimated sink for carbon ?” (http://www.esa.int/Our_Activities/Observing_the_Earth/Is_Europe_an_underestimated_sink_for_carbon_dioxide)

Reuter et al., 2014b, studied co-located SCIAMACHY XCO₂ and NO₂ retrievals over major anthropogenic source regions. For East Asia they found increasing emissions of NOₓ (+5.8%/year) and CO₂ (+9.8%/year), i.e., decreasing emissions of NOₓ relative to CO₂ indicating that the recently installed and renewed technology in East Asia, such as power plants and transportation-related sources, is cleaner in terms of NOₓ emissions per amount of fossil fuel burned than the old infrastructure, and roughly matches relative emission levels in North America and Europe. (http://www.esa.int/Our_Activities/Observing_the_Earth/Space_for_our_climate/Good_and_bad_news_for_our_atmosphere)
GHG-CCI Climate Research Data Package (CRDP#2)

Main Product ID

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Product (Level 2, mole fractions)</th>
<th>Years processed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2002 03 04 05 06 07 08 09 10 11 12 13 14 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCO2_SCIA</td>
<td>XCO2</td>
<td></td>
</tr>
<tr>
<td>XCH4_SCIA</td>
<td>XCH4</td>
<td></td>
</tr>
<tr>
<td>XCO2_GOSAT</td>
<td>XCO2</td>
<td></td>
</tr>
<tr>
<td>XCH4_GOSAT</td>
<td>XCH4</td>
<td></td>
</tr>
<tr>
<td>XCO2_EMMA</td>
<td>XCO2</td>
<td></td>
</tr>
</tbody>
</table>

GHG-CCI Core Products: ECV Core Algorithm (ECA) Products

<table>
<thead>
<tr>
<th>Algorithm / Product ID</th>
<th>Product</th>
<th>Sensor Satellite</th>
<th>Algorithm Institute</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2_IASI</td>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4_IASI</td>
<td>CH4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4_SCIAOCC</td>
<td>CH4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2_SCIAOCC</td>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2_ACEFTS</td>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4_MIPAS</td>
<td>CH4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2_AIRS</td>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Constraints Algorithm (ACA) Products

<table>
<thead>
<tr>
<th>Algorithm / Product ID</th>
<th>Product</th>
<th>Sensor Satellite</th>
<th>Algorithm Institute</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2_IASI</td>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4_IASI</td>
<td>CH4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4_SCIAOCC</td>
<td>CH4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCO2_SCIA</td>
<td>XCO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCH4_SCIA</td>
<td>XCH4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCO2_GOSAT</td>
<td>XCO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCH4_GOSAT</td>
<td>XCH4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCO2_EMMA</td>
<td>XCO2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

- **ECA Algorithms for column-averaged dry air mole fractions:**
 - XCO2_SCIA: BESD, WFMD
 - XCH4_SCIA: WFMD, IMAP
 - XCO2_GOSAT: SRFP (RemoTeC), OCFP (UoL-FP)
 - XCH4_GOSAT: SRFP & SRPR (RemoTeC), OCFP (UoL-PR)
 - XCO2_EMMA: Various (SCIA & GOSAT merged)

Details (temporal coverage, etc.): [http://www.esa-ghg-cci.org -> CRDP (Data)]

Tab. 1: Overview CRDP#2. For details on the core algorithms see Tab. 2.

Tab. 2: Overview GHG-CCI core (“ECA”) data products. (*) The latest version, EMMAv2.0, covers 4 years and is also available on the GHG-CCI website. (§) Improved v5.2 products also available on GHG-CCI website.
GHG-CCI CRDP#2: Comparison of ECA products with GCOS Requirements

<table>
<thead>
<tr>
<th>Variable (*)</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCO₂</td>
<td>Temporal: GCOS: 4 hours Achieved: Days Note: No existing nor any planned mission meets the GCOS temporal resolution requirement.</td>
<td>GCOS: < 1 ppm URD(): < 0.5 ppm Achieved(): 0.4-0.9 ppm(?) (?) Depending on sensor, time period and assessment method</td>
<td>GCOS: < 0.2 ppm/yr URD: < 0.5 ppm/yr Achieved: << 0.5 ppm/yr(+) (+) Derived trends not significant</td>
</tr>
<tr>
<td>XCH₄</td>
<td>Spatial: GCOS: 5-10 km Achieved(): 10 km ($) for GOSAT, SCIAMACHY: 30x60 km² Note: GCOS requirements are target (maximum) requirements but URD requirements listed here are threshold (minimum) requirements.</td>
<td>GCOS: < 10 ppb URD(): < 10 ppb Achieved(): 3-8 ppb($) ($) for GOSAT; for SCIAMACHY 8-15 ppb depending on time period (degradation after Oct. 2005)</td>
<td>GCOS: < 2 ppb/yr URD: < 10 ppb/yr Achieved: < 4 ppb/yr(!) (!) Derived trends mostly not significant but note (§§)</td>
</tr>
</tbody>
</table>

(*): Requirements for column-averaged mole fractions (= air column normalized vertical GHG columns) as required by URD; it is assumed here that this corresponds to GCOS variables „Tropospheric CO₂ column“ and „Tropospheric CH₄ column“

References: GCOS (GCOS-154): GCOS, 2011; URD: Chevallier et al., 2015

Definition: ECV GHG (GCOS-154): Product A8.1: Retrievals of CO₂ and CH₄ of sufficient quality to estimate regional sources and sinks

Tab. 3: Comparison of the characteristics of the GHG-CCI CRDP#2 core (ECA) products with user requirements. From: Buchwitz et al., 2015b (PVIRv3.2).

4. **ONGOING ACTIVITIES AND FUTURE PLANS**

Currently (May 2015) GHG-CCI team members are working on further improving the retrieval algorithms to be used for re-processing of the satellite data. The next version of the GHG-CCI Climate Research Data Package, CRDP#3, will be released in April 2016 (including documentation on validation (PVIR) and initial user assessments (CAR)).

GHG-CCI retrieval experts are also members of the OCO-2 Science Team and involved in the development of retrieval algorithms for Sentinel-5-Precursor and the data products of these sensors will also be considered by GHG-CCI. For OCO-2 it is initially planned to perform detailed comparisons to determine the consistency of the XCO₂ data products and to perform initial retrievals.

GHG-CCI team members are also involved in the specification of future GHG satellites, in particular CarbonSat (Bovensmann et al., 2010, Buchwitz et al., 2013). CarbonSat, if selected for ESA’s Earth Explorer 8 satellite, will continue the time series of greenhouse gas observations from space presented in this manuscript but will also address many important new aspects which cannot (or only with severe limitations) be addressed with other existing or planned satellites in particular the detection of localized CO₂ and CH₄ sources and the quantification of their emissions. Like SCIAMACHY, GOSAT and OCO-2, sun induced chlorophyll fluorescence, SIF, will be a secondary data product from CarbonSat (Buchwitz et al., 2013) which can be linked to Gross Primary Production (GPP; e.g., Parazoo et al., 2013, and references given therein) and for investigating the impact of stress on vegetation and the CO₂ uptake at the few km² spatial resolution scale of CarbonSat. The main goal of CarbonSat is to advance our knowledge on the natural and man-made sources and sinks of the two most important anthropogenic greenhouse gases carbon dioxide and methane from the global via the sub-continental to the local scale. CarbonSat will be the first satellite mission to image small scale emission hot spots of CO₂ (e.g., cities, volcanoes, industrial areas) and CH₄ (e.g., fossil fuel production, landfills, seeps) and to quantify their emissions and discriminate them from surrounding biospheric fluxes. In this context see also Ciais et al., 2014, and CEOS, 2014, for an overview about current capabilities and limitations and future needs for establishing a global carbon observing system.

ACKNOWLEDGEMENTS

We thank JAXA and NIES for support and for providing us with GOSAT Level 1 data. We thank NIES and the NASA/ACOS team for supporting us and for providing us with GOSAT Level 2 data products. We thank ESA and DLR for providing us with SCIAMACHY Level 1 data products and ESA for funding this project.
REFERENCES

Note: (*) indicates publications with acknowledged GHG-CCI funding

58. Oshchepkov, S., Bril, A., Yokota, T., et al., Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO₂
dioxideexchange:CarbonTracker,ProceedingsoftheNationalAcademyofSciences(PNAS)oftheUnitedStates
63.Reuter,M.,Buchwitz,M.,Schneising,O.,et al.,Amethod
forimprovedSCIAMACHYCO2retrievalinthepresence
64.Reuter,M.,Bovensmann,H.,Buchwitz,M.,et al.,RetrievalofatmosphericCO2withenhancedaccuracyand
precisionfromSCIAMACHY:ValidationwithFTS
measurementsandcomparisonwithmodelresults,J.
2011.(*)
65.Reuter,M.,Bovensmann,H.,Buchwitz,M.,et al.,Onthe
potentialofthe2041-2047nm spectral regionforremote
sensingofatmosphericCO2isotopologues,Journalof
QuantitativeSpectroscopyandRadiativeTransfer,
2012a.(*)
66.Reuter,M.,Buchwitz,M.,Schneising,O.,et al.:Asimple
empiricalmodelestimatingatmosphericCO2background
(*)
67.Reuter,M.,Boesch,H.,Bovensmann,H.,et al.,AJoint
efforttodeliversatellite-retrievedatmosphericCO2
concentrationsforfluxinversions:thesensemble
medianalgorithmEMMA,Atmos. Chem. Phys.,13,1771-
1780,2013.(*)
68.Reuter,M.,Buchwitz,M.,Hilker,M.,et al.,Satellite-
inferredEuropeancarbonsinklargerthanexpected,Atmos.
Chem. Phys.,14,13739-13753,www.atmos-chem-
phys.net/14/13739/2014/,doi:10.5194/acp-14-13739-2014,
2014a.(see
also
http://www.esa.int/Our_Activities/Observing_the_Earth/Is
Europe_an_underestimated_sink_for_carbon_dioxide?)(*)
69.Reuter,M.,Buchwitz,M.,HilbolI,A.,et al.,Decreasing
emissionsofNOxrelativetoCO2inEastAsiainferred
fromsatelliteobservations,NatureGeoscience,28Sept.
2014,doi:10.1038/ngeo2257,pp.4,2014b.(seealso
http://www.esa.int/Our_Activities/Observing_the_Earth/Sp
ace_for_our_climate/Good_and_bad_news_for_our_atmos
phere)(*)
70.Rigby,M.,Prinn,R.G.,Fraser,P.J.,et al.,Renewed
growthofatmosphericmethane,Geophys. Res. Lett.,35,
71.Ross,A.N.,Wooster,M.J.,Boesch,H.,Parker,R.,First
satellitemeasurementsofcarbondioxideandmethane
retrivalfromGreenhouseGasesObservingSatellite
(GOSAT)shortwaveinfraredmeasurements:Performsance
comparisonofproxyandphysicsretrievalalgorithms,J.
Geophys. Res.,117,D10307,doi:10.1029/2012JD017549,
2012.
73.Schneising,O.,Buchwitz,M.,Reuter,M.,et al.,Long-
termanalysisofcarbon-dioxideandmethane-column-
averagedmolefractionsretrievedfromSCIAMACHY,
Atmos. Chem. Phys.,11,2881-2892,2011.(*)
74.Schneising,O.,Bergamaschi,P.,Bovensmann,H.,et al.,Atmosphericgreenhousegasessampled
fromSCIAMACHY:comparisontoground-basedFTS
measurementsandmodelresults,Atmos. Chem. Phys.,12,
1527-1540,2012.(*)
75.Schneising,O.,Heymann,J.,Buchwitz,M.,Reuter,M.,
Bovensmann,H.,andBurrows,J.P.,Anthropogenic
carbon dioxide source areas observed from space:
assessmentofregionalenhancementsandtrends,Atmos.
Chem. Phys.,13,2445-2454,2013.(*)
76.Schneising,O.,Reuter,M.,Buchwitz,M.,Heymann,J.,
Bovensmann,H.,andBurrows,J.P.,Terrestrialsand
sinkobservedfromspace:variationofgrowthratesand
seasonalcycleamplitudesinresponsetoceanal
surface temperaturevariability,Atmos. Chem. Phys.,14,
133-141,2014a.(*)
77.Schneising,O.,Burrows,J.P.,Dickerson,R.R.,
Buchwitz,M.,Reuter,M.,Bovensmann,H.,Remote
sensingoffugitivemethaneemissionsfromoilandgas
productioninNorthAmericantightgeologicformations,
Earth'sFuture,2,DOI:10.1002/2014EF000265,pp.11,
2014b.(*)
78.Schulze,E.D.,Luysaert,S.,Ciais,P.,et al.,Importance
ofmethaneandnitrousoxideemissionsforEurope's
terrestrial greenhouse gas balance,Nat. Geosci.,2,842–
InteractiveozoneandmethanechemistryinGISS-E2
historicalandfutureclimatesimulations,Atmos.
Chem. Phys.,13,2653–2689,doi:10.5194/acp-13-2653-2013,
2013.
80.Sussmann,R.,Forster,F.,Rettiger,M.andJones,N.,
Strategyforhigh-accuracy-and-precisionretrieval
ofatmosphericmethanefromthemid-infraredFTIR
81.Sussmann,R.,Forster,F.,Rettiger,M.,andBousquet,P.,
Renewedmethaneforincreaseforfiveyears(2007-2011)
observedbysatelliteFTIRspectrometry,Atmos.
Chem. Phys.,12,4885-4891,2012.(*)
82.Sussmann,R.,Osterl,A.,Forster,F.,et al.,First
intercalibrationofcolumn-averagedmethanefromthe
TotalCarbonColumnObservingNetworkandthe
NetworkfortheDetectionofAtmosphericComposition
Change,Atmos. Meas. Tech.,6,397-419,2013.(*)
83.Wecht,K.J.,Jacob,D.J.,Salprizza,M.P.,et al.,Spatially
resolvingmethaneemissionsinCalifornia:constraints
fromtheCalNExaircraftcampaignandfrompresent
(GOSAT,TES)andfuture(TROPOMI,geostationary)
satelliteobservations,Atmos. Chem. Phys.,14,8173-8184,
www.atmos-chem-phys.net/14/8173/2014/,doi:10.5194/acp-14-8173-2014,2014.(*)
84.Wunch,D.,Toon,G.C.,Blavier,J.-F.,et al.,TheTotal
CarbonColumnObservingNetwork,Phil.Trans.R.
85.Yoshida,Y.,Kikuchi,N.,Morrino,I.,et al.,Improvement
oftheretrievalalgorithmforsOSATSWIRXCO2
andXCH4andtheirvalidationusingTCCONdata,Atmos.
Meas. Tech.,6,1533–1547,doi:10.5194/amt-6-1533-2013,
2013.