NRT M-factor delivery document 05 May 2008

Klaus Bramstedt, ife Bremen 05 May 2008

1 Content

This document describes the m-factor dataset, produced by ife/Bremen according to m-factor tech-note [1]. M-factors for the calibration light path (M_CAL), the limb light path (M_DL) and the nadir light path (M_DN) to the science detectors are included. All other m-factors are set to the default value of 1.0, i. e. have no effect. The m-factors are delivered as auxiliary files as defined in the SCIAMACHY IODD [2]. M-factor version is 06.01.

This document describes a delivery within the near real time (NRT) setup of the Envisat ground segment. A delivery is foreseen every 7 days, it contains the calculated data for the past 7 days (including the current day) and an extrapolation for the next 7 days. In nominal case, the extrapolated m–factors will not be used. They are available in case of an early start of the level 1–2 processing or an delay in the m–factor delivery. The current package contains m–factors for:

• Calculated: 29 Apr 2008–05 May 2008

• Prediction: 06 May 2008–12 May 2008

Note: If there is no appropriate monitoring measurement for the delivery day available at the time of calculation, also the nominal calculated m-factors may contain predicted values. Especially for M_DN this will be the case, as the corresponding measurement is performed only every 3 days.

2 Delivered files

Table 1 gives the MD5 sums (md5 text mode) [3] and the names of the delivered m-factor files.

Table 2 gives information, how the file content is calculated: Based on actual measurements (meas.), an interpolated m-factor (interp.) or a predicted, i. e. extrapolated m-factor value (pred.) for three light paths.

Table 1: MD5 sum and filename of the delivered m-factor files.

md5-sum m-factor auxiliary file

bd7eb9bfe785efbe037b46385c292a8f f9251f8edfbe13b20be7a156e4a76be2 fda151359650b0729b905795e2f5fb07 0c71725c3f133d70f15eef08f25e1f4e 88fc099c92031a3b490f2dc6c453034b 7327b308e6d0b729fba5381d7cb39603 0faebd7a287330c969b33f69dc4ca596 b0fcc6b38155754257d34162d751a679 4611082bf07f4ce52e66baaef346943e a46ebacef0e4276d79b0ecbe725259de 1cbfef91e8c5177ecba6864fd17f9c84 d1c5c2deef5650fb8937b7577ec3f96f dc0de07f8d4ad229d1110584dc17d461 1c5b56ca70d602e694d40dab85620f51

SCI_MF1_AXNIFE20080505_215812_20080429_191704_20080501_191704
SCI_MF1_AXNIFE20080505_215812_20080430_184527_20080502_184527
SCI_MF1_AXNIFE20080505_215812_20080501_181350_20080503_181350
SCI_MF1_AXNIFE20080505_215812_20080502_192249_20080504_192249
SCI_MF1_AXNIFE20080505_215812_20080503_185112_20080505_185112
SCI_MF1_AXNIFE20080505_215812_20080504_181935_20080506_181935
SCI_MF1_AXNIFE20080505_215812_20080505_192834_20080507_192834
SCI_MF1_AXNIFE20080505_215812_20080506_185657_20080508_185657
SCI_MF1_AXNIFE20080505_215812_20080507_182520_20080509_182520
SCI_MF1_AXNIFE20080505_215812_20080509_182520_20080509_182520
SCI_MF1_AXNIFE20080505_215812_20080509_190242_20080511_190242
SCI_MF1_AXNIFE20080505_215812_20080509_190242_20080511_190242
SCI_MF1_AXNIFE20080505_215812_20080510_183105_20080512_183105
SCI_MF1_AXNIFE20080505_215812_20080511_194004_20080513_194004
SCI_MF1_AXNIFE20080505_215812_20080511_194004_20080513_194004
SCI_MF1_AXNIFE20080505_215812_20080511_194004_20080513_194004

Table 2: Source information for the individual m-factors of the delivery set.

validity identifier	$M_{-}CAL$	$\mathrm{M}_{-}\mathrm{DL}$	M_DN
20080429_191704_20080501_191704	meas.	meas.	interp.
20080430_184527_20080502_184527	meas.	meas.	meas.
20080501_181350_20080503_181350	meas.	meas.	interp.
20080502_192249_20080504_192249	meas.	meas.	interp.
20080503_185112_20080505_185112	meas.	meas.	interp.
20080504_181935_20080506_181935	meas.	meas.	meas.
20080505_192834_20080507_192834	pred.	pred.	pred.
20080506_185657_20080508_185657	pred.	pred.	pred.
20080507_182520_20080509_182520	pred.	pred.	pred.
20080508_193419_20080510_193419	pred.	pred.	pred.
20080509_190242_20080511_190242	pred.	pred.	pred.
20080510_183105_20080512_183105	pred.	pred.	pred.
20080511_194004_20080513_194004	pred.	pred.	pred.
20080512_190827_20080609_190827	pred.	pred.	pred.

3 Content check

M-factors describe the degradation of the instrument and are used to compensate for it in the radiometric calibration. Fast changes with time are not expected, i.e. the ratio $M_{ratio,t}$ of m-factors M_t this delivery to the m-factor M_{t_0} of the previous delivery day should be close to 1. The ratio $M_{ratio,t}$ and its reciprocal value should not exceed a

Table 3: Detector pixels used for the calculations described in this document. SCIA-MACHY has 8 channels with 1024 pixels per channel. The pixel range is given as the first and last pixel in each channel. For channel 2, the pixel number is given in wavelength order, i.e. the pixel numbers are already reversed.

channel	1	2	3	4	5	6	7	8
pixel range	197 784	1140 1859	2131 2943	$3117 \\ 3925$		$5226 \\ 5914$		

Table 4: Content check results.

	max. rat	io (ch. 6/	7: median)	mean ratio				
	$M_{-}CAL$	$\mathrm{M}_{ ext{-}}\mathrm{DL}$	$M_{-}DN$	$M_{\text{-}}CAL$	M_DL	MDN	limit	status
1	1.0054	1.0136	1.0240	1.0013	1.0047	1.0085	1.0400	OK
2	1.0020	1.0049	1.0078	1.0008	1.0019	1.0032	1.0200	OK
3	1.0008	1.0014	1.0027	1.0002	1.0005	1.0013	1.0100	OK
4	1.0010	1.0011	1.0018	1.0002	1.0003	1.0012	1.0100	OK
5	1.0013	1.0017	1.0019	1.0003	1.0006	1.0012	1.0120	OK
6	1.0010	1.0021	1.0017	1.0000	0.9999	1.0002	1.0100	OK
7	1.0002	0.9999	1.0001	_	_	_	1.0070	OK
8	1.0012	1.0004	1.0010	_	_	_	1.0120	OK

certain limit l:

$$M_{ratio,t} = \frac{M_t}{M_{t_0}}$$
 with $M_{ratio,i} < l$ and $\frac{1}{M_{ratio,i}} < l$ (1)

This limit is defined for each channel. The limits are derived from a time-series of deliveries simulated for 2007 [1]. For channel 1 to 6, each individual pixel for each dataset has to meet the criteria. Channel 7 and 8 are the infrared detectors with a varying number of bad or dead pixels with unpredictable behavior. A criterion for each pixel is not applicable, therefore a median over the channel is used as $M_{ratio,t}$ and has to meet the criteria. Blind pixels, the overlap regions and channel 6+ are excluded from the calculations, see table 3.

The previous delivery day t_0 is 28 Apr 2008, therefore M_{t_0} is taken from the m-factor file SCI_MF1_AXNIFE20080428_220446_20080428_194841_20080430_194841 .

Table 4 summarizes the results for this delivery. Also the settings for the limit are given. For information only, also the mean ratio is given. OK in the last column means, that the criteria is fulfilled for the channel.

This delivery is within all limits and can be used.

4 Visualization of content check

Figure 1 shows the ratio $M_{ratio,t}$ for all delivered m-factors for each channel. The grey boxes visualize the maximum ratio allowed.

References

- [1] Bramstedt, K, Calculation of SCIAMACHY M-Factors, *Technical note*, IFE-SCIA-TN-2007-01-CalcMFactor, Issue 1, ife Bremen, 2008.
- [2] Balzer, W, and Slijkhus, S, *Technical document*, SCIAMACHY Level 0 to 1b Processing Input / Output Data Definition, ENV-TN-DLR-SCIA-0005, Issue 5, DLR Oberpfaffenhofen, 2000.
- [3] RFC 1321 The MD5 Message-Digest Algorithm, Internet RFC/STD/FYI/BCP Archives, 1992

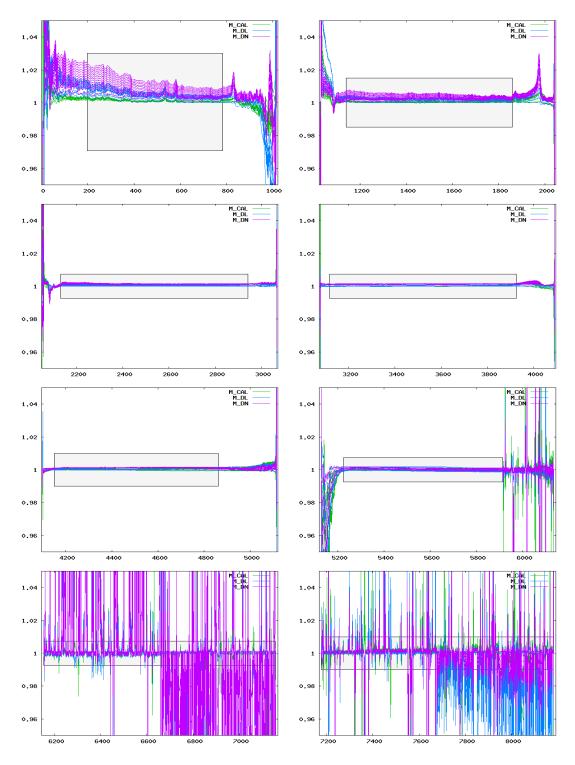


Figure 1: Ratio of delivered m-factors (29 Apr 2008– 12 May 2008) to the corresponding m-factor of the previous delivery day (28 Apr 2008). The grey boxes visualize the maximum ratio allowed.