NRT M-factor delivery document 24 May 2010

Klaus Bramstedt, ife Bremen 24 May 2010

1 Content

This document describes the m-factor dataset, produced by ife/Bremen according to m-factor tech-note [1]. M-factors for the calibration light path (M_CAL), the limb light path (M_DL) and the nadir light path (M_DN) to the science detectors are included. All other m-factors are set to the default value of 1.0, i. e. have no effect. The m-factors are delivered as auxiliary files as defined in the SCIAMACHY IODD [2]. M-factor version is 07.01.

This document describes a delivery within the near real time (NRT) setup of the Envisat ground segment. A delivery is foreseen every 7 days, it contains the calculated data for the past 7 days (including the current day) and an extrapolation for the next 7 days. In nominal case, the extrapolated m–factors will not be used. They are available in case of an early start of the level 1–2 processing or an delay in the m–factor delivery. The current package contains m–factors for:

• Calculated: 18 May 2010–24 May 2010

• Prediction: 25 May 2010–31 May 2010

Note: If there is no appropriate monitoring measurement for the delivery day available at the time of calculation, also the nominal calculated m-factors may contain predicted values. Especially for M_DN this will be the case, as the corresponding measurement is performed only every 3 days.

2 Delivered files

Table 1 gives the MD5 sums (md5 text mode) [3] and the names of the delivered m-factor files.

Table 2 gives information, how the file content is calculated: Based on actual measurements (meas.), an interpolated m-factor (interp.) or a predicted, i. e. extrapolated m-factor value (pred.) for three light paths.

Table 1: MD5 sum and filename of the delivered m-factor files

md5-sum m-factor auxiliary file

2bb122c90786cf475acdfff86b777576 cf2d7e1bf3a8e494d965173498ebe35f 0952bff91136033ff241a0fcc586c44a dcbc2a2b394bc664f9f2d4f5a9e6f6ea 073b53129ebcfd72309ca86a829ca391 d3fc2a4e0ca60174bd5885baed6bcd73 bb5165dc13a522b6c1ef4fdab0fc410f ee2bf6c52265c5ecb3ef4285767b3e5f e054290003b88b48120ceaa0f70021c1 5c2f6f665bd32a68154caf1e7358a11b cf6f806be049e2195b88bcdd948b9081 b6a57e4d4dfbeefff0071944e8bda77c 10d4a2734c72d59894f8421e420e8476

19b948a52d023c6f6630cd3674aa527f SCI_MF1_AXNIFE20100525_034222_20100518_183648_20100520_183648 SCI_MF1_AXNIFE20100525_034222_20100519_194547_20100521_194547 SCI_MF1_AXNIFE20100525_034222_20100520_191410_20100522_191410 SCI_MF1_AXNIFE20100525_034222_20100521_184233_20100523_184233 SCI_MF1_AXNIFE20100525_034222_20100522_181056_20100524_181056 SCI_MF1_AXNIFE20100525_034222_20100523_191955_20100525_191955 SCI_MF1_AXNIFE20100525_034222_20100524_184818_20100526_184818 SCI_MF1_AXNIFE20100525_034222_20100525_181641_20100527_181641 SCI_MF1_AXNIFE20100525_034222_20100526_192540_20100528_192540 SCI_MF1_AXNIFE20100525_034222_20100527_185403_20100529_185403 SCI_MF1_AXNIFE20100525_034222_20100528_182226_20100530_182226 ${\tt SCI_MF1_AXNIFE20100525_034222_20100529_193125_20100531_193125}$ SCI_MF1_AXNIFE20100525_034222_20100530_185948_20100601_185948 SCI_MF1_AXNIFE20100525_034222_20100531_182811_20100628_182811

Table 2: Source information for the individual m-factors of the delivery set.

validity identifier	$M_{-}CAL$	$\mathrm{M}_{-}\mathrm{DL}$	M_DN
20100518_183648_20100520_183648	meas.	meas.	meas.
20100519_194547_20100521_194547	meas.	meas.	interp.
20100520_191410_20100522_191410	meas.	meas.	interp.
20100521_184233_20100523_184233	meas.	meas.	interp.
20100522_181056_20100524_181056	meas.	meas.	meas.
20100523_191955_20100525_191955	meas.	meas.	pred.
20100524_184818_20100526_184818	meas.	meas.	pred.
20100525_181641_20100527_181641	pred.	pred.	pred.
20100526_192540_20100528_192540	pred.	pred.	pred.
20100527_185403_20100529_185403	pred.	pred.	pred.
20100528_182226_20100530_182226	pred.	pred.	pred.
20100529_193125_20100531_193125	pred.	pred.	pred.
20100530_185948_20100601_185948	pred.	pred.	pred.
20100531_182811_20100628_182811	pred.	pred.	pred.

3 Content check

M-factors describe the degradation of the instrument and are used to compensate for it in the radiometric calibration. Fast changes with time are not expected, i.e. the ratio $M_{ratio,t}$ of m-factors M_t this delivery to the m-factor M_{t_0} of the previous delivery day should be close to 1. The ratio $M_{ratio,t}$ and its reciprocal value should not exceed a

Table 3: Detector pixels used for the calculations described in this document. SCIA-MACHY has 8 channels with 1024 pixels per channel. The pixel range is given as the first and last pixel in each channel. For channel 2, the pixel number is given in wavelength order, i.e. the pixel numbers are already reversed.

channel	1	2	3	4	5	6	7	8
pixel range	197 784	1140 1859	2131 2943	$3117 \\ 3925$		$5226 \\ 5914$		

Table 4: Content check results.

	max. rat	io (ch. 6/	7: median)	mean ratio				
	$M_{\text{-}}CAL$	$\mathrm{M}_{ ext{-}}\mathrm{DL}$	$M_{-}DN$	$M_{-}CAL$	$\mathrm{M}_{ ext{-}}\mathrm{DL}$	MDN	limit	status
1	1.0052	1.0115	1.0204	0.9993	1.0047	1.0061	1.0400	OK
2	1.0010	1.0075	1.0109	1.0004	1.0028	1.0032	1.0200	OK
3	1.0014	1.0027	1.0039	1.0002	1.0007	1.0007	1.0100	OK
4	1.0007	1.0007	1.0009	1.0001	1.0003	1.0001	1.0100	OK
5	1.0010	1.0009	1.0026	0.9999	1.0001	0.9990	1.0120	OK
6	1.0016	1.0015	1.0021	1.0002	1.0003	0.9988	1.0100	OK
7	1.0009	1.0003	1.0007	_	_	_	1.0070	OK
8	1.0006	1.0013	1.0022	_	_	_	1.0120	OK

certain limit l:

$$M_{ratio,t} = \frac{M_t}{M_{t_0}}$$
 with $M_{ratio,i} < l$ and $\frac{1}{M_{ratio,i}} < l$ (1)

This limit is defined for each channel. The limits are derived from a time-series of deliveries simulated for 2007 [1]. For channel 1 to 6, each individual pixel for each dataset has to meet the criteria. Channel 7 and 8 are the infrared detectors with a varying number of bad or dead pixels with unpredictable behavior. A criterion for each pixel is not applicable, therefore a median over the channel is used as $M_{ratio,t}$ and has to meet the criteria. Blind pixels, the overlap regions and channel 6+ are excluded from the calculations, see table 3.

The previous delivery day t_0 is 17 May 2010, therefore M_{t_0} is taken from the m-factor file SCI_MF1_AXNIFE20100518_034227_20100517_190825_20100519_190825 .

Table 4 summarizes the results for this delivery. Also the settings for the limit are given. For information only, also the mean ratio is given. OK in the last column means, that the criteria is fulfilled for the channel.

This delivery is within all limits and can be used.

4 Visualization of content check

Figure 1 shows the ratio $M_{ratio,t}$ for all delivered m-factors for each channel. The grey boxes visualize the maximum ratio allowed.

References

- [1] Bramstedt, K, Calculation of SCIAMACHY M-Factors, *Technical note*, IFE-SCIA-TN-2007-01-CalcMFactor, Issue 1, ife Bremen, 2008.
- [2] Balzer, W, and Slijkhus, S, *Technical document*, SCIAMACHY Level 0 to 1b Processing Input / Output Data Definition, ENV-TN-DLR-SCIA-0005, Issue 5, DLR Oberpfaffenhofen, 2000.
- [3] RFC 1321 The MD5 Message-Digest Algorithm, Internet RFC/STD/FYI/BCP Archives, 1992

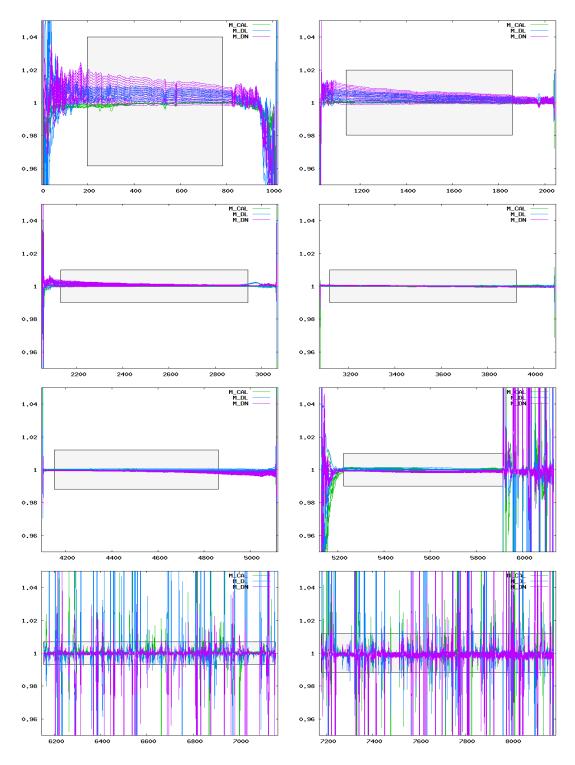


Figure 1: Ratio of delivered m-factors (18 May 2010–31 May 2010) to the corresponding m-factor of the previous delivery day (17 May 2010). The grey boxes visualize the maximum ratio allowed.