# NRT M-factor delivery document 09 May 2011

Klaus Bramstedt, ife Bremen 09 May 2011

#### 1 Content

This document describes the m-factor dataset, produced by ife/Bremen according to m-factor tech-note [1]. M-factors for the calibration light path (M\_CAL), the limb light path (M\_DL) and the nadir light path (M\_DN) to the science detectors are included. All other m-factors are set to the default value of 1.0, i. e. have no effect. The m-factors are delivered as auxiliary files as defined in the SCIAMACHY IODD [2]. M-factor version is 07.01.

This document describes a delivery within the near real time (NRT) setup of the Envisat ground segment. A delivery is foreseen every 7 days, it contains the calculated data for the past 7 days (including the current day) and an extrapolation for the next 7 days. In nominal case, the extrapolated m–factors will not be used. They are available in case of an early start of the level 1–2 processing or an delay in the m–factor delivery. The current package contains m–factors for:

• Calculated: 03 May 2011– 09 May 2011

• Prediction: 10 May 2011–16 May 2011

Note: If there is no appropriate monitoring measurement for the delivery day available at the time of calculation, also the nominal calculated m-factors may contain predicted values. Especially for M\_DN this will be the case, as the corresponding measurement is performed only every 3 days.

#### 2 Delivered files

Table 1 gives the MD5 sums (md5 text mode) [3] and the names of the delivered m-factor files.

Table 2 gives information, how the file content is calculated: Based on actual measurements (meas.), an interpolated m-factor (interp.) or a predicted, i. e. extrapolated m-factor value (pred.) for three light paths.

Table 1: MD5 sum and filename of the delivered m-factor files

md5-sum m-factor auxiliary file

46b7ea2c7b7249356b98a1b336f25f60 8dacb04200e4b28485acb86a8f77751c 8d71f36065380b0b6491efd9365ad1a3 b57d69e2f26e937a6dd3005d89761864 eff3a32dcf6f59459d724fc149b09651 e389c7a6cc62401ead307197930be9fc 9bb8c8d8785dcbc11b5a0fad750730dd caa4ca535ac5bd1caf08f5d7e3808da0 864561351da39f07551082d9bcdd1726 e43c726a8ba955401ffa317647a6b95c cc26f48307543f1f82fd54d937975cae ba9e52b7207f6cdaa5e049c93cf4bb79 fd8176c5f1076a5ae826b4fd201d1446

e2c804ea0563a93cd04107c5c300d32a SCI\_MF1\_AXNIFE20110510\_035830\_20110503\_183448\_20110505\_183448 SCI\_MF1\_AXNIFE20110510\_035830\_20110504\_193817\_20110506\_193817 SCI\_MF1\_AXNIFE20110510\_035830\_20110505\_190131\_20110507\_190131 SCI\_MF1\_AXNIFE20110510\_035830\_20110506\_182446\_20110508\_182446 SCI\_MF1\_AXNIFE20110510\_035830\_20110507\_192814\_20110509\_192814 SCI\_MF1\_AXNIFE20110510\_035830\_20110508\_185129\_20110510\_185129 SCI\_MF1\_AXNIFE20110510\_035830\_20110509\_181443\_20110511\_181443 SCI\_MF1\_AXNIFE20110510\_035830\_20110510\_191812\_20110512\_191812 SCI\_MF1\_AXNIFE20110510\_035830\_20110511\_184126\_20110513\_184126 SCI\_MF1\_AXNIFE20110510\_035830\_20110512\_194455\_20110514\_194455 SCI\_MF1\_AXNIFE20110510\_035830\_20110513\_190809\_20110515\_190809  ${\tt SCI\_MF1\_AXNIFE20110510\_035830\_20110514\_183124\_20110516\_183124}$ SCI\_MF1\_AXNIFE20110510\_035830\_20110515\_193452\_20110517\_193452 SCI\_MF1\_AXNIFE20110510\_035830\_20110516\_185807\_20110613\_185807

Table 2: Source information for the individual m-factors of the delivery set.

| validity identifier             | $\mathrm{M}_{	ext{-}}\mathrm{CAL}$ | $\mathrm{M}_{-}\mathrm{DL}$ | M_DN    |
|---------------------------------|------------------------------------|-----------------------------|---------|
| 20110503_183448_20110505_183448 | meas.                              | meas.                       | interp. |
| 20110504_193817_20110506_193817 | meas.                              | meas.                       | interp. |
| 20110505_190131_20110507_190131 | meas.                              | meas.                       | interp. |
| 20110506_182446_20110508_182446 | meas.                              | meas.                       | meas.   |
| 20110507_192814_20110509_192814 | interp.                            | meas.                       | pred.   |
| 20110508_185129_20110510_185129 | meas.                              | meas.                       | pred.   |
| 20110509_181443_20110511_181443 | pred.                              | meas.                       | pred.   |
| 20110510_191812_20110512_191812 | pred.                              | pred.                       | pred.   |
| 20110511_184126_20110513_184126 | pred.                              | pred.                       | pred.   |
| 20110512_194455_20110514_194455 | pred.                              | pred.                       | pred.   |
| 20110513_190809_20110515_190809 | pred.                              | pred.                       | pred.   |
| 20110514_183124_20110516_183124 | pred.                              | pred.                       | pred.   |
| 20110515_193452_20110517_193452 | pred.                              | pred.                       | pred.   |
| 20110516_185807_20110613_185807 | pred.                              | pred.                       | pred.   |

### 3 Content check

M-factors describe the degradation of the instrument and are used to compensate for it in the radiometric calibration. Fast changes with time are not expected, i.e. the ratio  $M_{ratio,t}$  of m-factors  $M_t$  this delivery to the m-factor  $M_{t_0}$  of the previous delivery day should be close to 1. The ratio  $M_{ratio,t}$  and its reciprocal value should not exceed a

Table 3: Detector pixels used for the calculations described in this document. SCIA-MACHY has 8 channels with 1024 pixels per channel. The pixel range is given as the first and last pixel in each channel. For channel 2, the pixel number is given in wavelength order, i.e. the pixel numbers are already reversed.

| channel | 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|---------|-----|------|------|------|------|------|------|------|
| pixel   | 197 | 1140 | 2131 | 3117 | 4151 | 5226 | 6154 | 7178 |
| range   | 784 | 1859 | 2943 | 3925 | 4863 | 5914 | 7157 | 8181 |

Table 4: Content check results.

|   | max. rat   | io (ch. 6/                        | 7: median) | mean ratio        |                                    |        |           |        |
|---|------------|-----------------------------------|------------|-------------------|------------------------------------|--------|-----------|--------|
|   | $M_{-}CAL$ | $\mathrm{M}_{	ext{-}}\mathrm{DL}$ | $M_{-}DN$  | $M_{\text{-}}CAL$ | $\mathrm{M}_{\text{-}}\mathrm{DL}$ | $M_DN$ | $\lim$ it | status |
| 1 | 1.0118     | 1.0359                            | 1.0211     | 0.9974            | 0.9854                             | 0.9949 | 1.0400    | OK     |
| 2 | 1.0024     | 1.0185                            | 1.0060     | 0.9995            | 0.9944                             | 0.9985 | 1.0200    | OK     |
| 3 | 1.0008     | 1.0054                            | 1.0045     | 1.0000            | 0.9988                             | 0.9975 | 1.0100    | OK     |
| 4 | 1.0011     | 1.0011                            | 1.0051     | 0.9999            | 0.9994                             | 0.9962 | 1.0100    | OK     |
| 5 | 1.0021     | 1.0026                            | 1.0075     | 0.9992            | 0.9991                             | 0.9958 | 1.0120    | OK     |
| 6 | 1.0016     | 1.0019                            | 1.0054     | 1.0004            | 0.9997                             | 0.9969 | 1.0100    | OK     |
| 7 | 1.0007     | 1.0013                            | 1.0050     | _                 | _                                  | _      | 1.0070    | OK     |
| 8 | 1.0014     | 1.0033                            | 1.0067     | _                 | _                                  | _      | 1.0120    | OK     |

certain limit l:

$$M_{ratio,t} = \frac{M_t}{M_{t_0}}$$
 with  $M_{ratio,i} < l$  and  $\frac{1}{M_{ratio,i}} < l$  (1)

This limit is defined for each channel. The limits are derived from a time-series of deliveries simulated for 2007 [1]. For channel 1 to 6, each individual pixel for each dataset has to meet the criteria. Channel 7 and 8 are the infrared detectors with a varying number of bad or dead pixels with unpredictable behavior. A criterion for each pixel is not applicable, therefore a median over the channel is used as  $M_{ratio,t}$  and has to meet the criteria. Blind pixels, the overlap regions and channel 6+ are excluded from the calculations, see table 3.

The previous delivery day  $t_0$  is 02 May 2011, therefore  $M_{t_0}$  is taken from the m-factor file SCI\_MF1\_AXNIFE20110503\_051904\_20110502\_191134\_20110504\_191134 .

Table 4 summarizes the results for this delivery. Also the settings for the limit are given. For information only, also the mean ratio is given. OK in the last column means, that the criteria is fulfilled for the channel.

This delivery is within all limits and can be used.

# 4 Visualization of content check

Figure 1 shows the ratio  $M_{ratio,t}$  for all delivered m-factors for each channel. The grey boxes visualize the maximum ratio allowed.

# References

- [1] Bramstedt, K, Calculation of SCIAMACHY M-Factors, *Technical note*, IFE-SCIA-TN-2007-01-CalcMFactor, Issue 1, ife Bremen, 2008.
- [2] Balzer, W, and Slijkhus, S, *Technical document*, SCIAMACHY Level 0 to 1b Processing Input / Output Data Definition, ENV-TN-DLR-SCIA-0005, Issue 5, DLR Oberpfaffenhofen, 2000.
- [3] RFC 1321 The MD5 Message-Digest Algorithm, Internet RFC/STD/FYI/BCP Archives, 1992

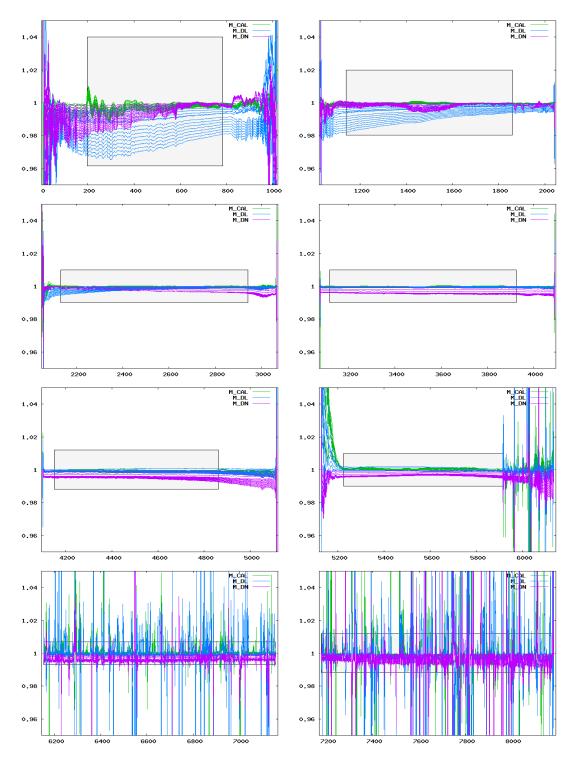



Figure 1: Ratio of delivered m-factors (03 May 2011–16 May 2011) to the corresponding m-factor of the previous delivery day (02 May 2011). The grey boxes visualize the maximum ratio allowed.