Contribution of mixing to the upward transport across the TTL (ACP, 2007)

P. Konopka, G. Günther, J.-U. Grooß, R. Müller, F. H. S. dos Santos, C. Schiller, A. Ulanovsky, H. Schlager, C. M. Volk, S. Viciani, L. Pan,

D.-S. McKenna, M. Riese

P.Konopka@fz-juelich.de

http://www.fz-juelich.de/icg/icg-i/www_export/p.konopka.

Research Center Juelich, ICG-I: Stratosphere, Germany

Upward transport across the TTL

CLaMS-Model

- CLaMS Lagrangian Chemistry Transport Model
- Potential temperature as vertical coordinate in the stratosphere
- Horizontal and vertical velocities from meteor. winds (ECMWF) and/or a radiation scheme
 - Lagrangian mixing

Chemistry

Trajectory

Sedimentation

Mixing

Full stratospheric chemistry
Lagrangian particle sedimentation scheme

McKenna et al JGR 2002

McKenna et al., JGR, 2002, Konopka et al., 200**5**, ACP

Extension for the troposphere - hybride coordinates

Greenland from space shuttle (NASA)

Convection AND radiative forcing \Rightarrow Hybride ζ -coordinates, Mahowald et al., JGR, 2002

|PV| [PVU]

Vertical cross section of PV (ECMWF)

Convection AND radiative forcing \Rightarrow Hybride ζ -coordinates, Mahowald et al., JGR, 2002

Vertical cross section of PV (ECMWF)

Forschungszentrum Jülich

Vertical cross section of PV (ECMWF)

Vertical velocities in the TTL

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

th

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

ilich

But, there is no gap by using $\Omega = \dot{p}$! (derived from the continuity equation, courtesy of H.-J. Punge and M Giorgetta)

But, there is no gap by using $\Omega = \dot{p}$! (derived from the continuity equation, courtesy of H.-J. Punge and M Giorgetta)

Vertical velocities derived from $\dot{\theta}$: SLIMCAT, CLaMS, Trajectory calculations (Schoeberl et al., Rex et al.,...) Vertical velocities derived from Ω : ECHAM, REPROBUS... Trajectory calculations (Fueglistaler et al., Wernli et al., Stohl et al.,...)

Possible options to close this gap ?

- 1. radiative lofting via cirrus clouds (Corti et al., ACP, 2006)
- overshooting convection dominates transport across the TTL ?
 "It is found (TRMM) that 1.3% of tropical convection systems reach 14 km and 0.1% of them may even penetrate the 380 K potential temperature level." (Liu et al., JGR, 2005)
- 3. CLaMS, deformation-induced mixing parameterizes the unresolved small-scale dynamics in the TTL (gravity-waves, etc..)

Mixing in CLaMS

Large-scale wind

Small-scale deformations

Filamentation

Hurricane Ivan from space shuttle (NASA)

Mixing (irreversibility)

Mixing in the vicinity of the subtropical jet

Subtropical jet over Himalayas

Hurricane Ivan from space shuttle (NASA)

Mixing in the vicinity of the subtropical jet

Hurricane Ivan from space shuttle (NASA)

Mixing in the vicinity of the subtropical jet

Hurricane Ivan from space shuttle (NASA)

Deformation-induced mixing

Deformation-induced mixing

A case study

A case study

Mixing intensity (Dec - Jan - Feb - Mar)

Mixing intensity (Dec - Jan - Feb - Mar)

Mixing intensity (Dec - Jan - Feb - Mar)

Conclusions

- Mixing (in CLaMS) is the main driving force for the upward transport across the TTL between 350 and 380 K (Konopka et al., ACP, 2007) (highest vertical mixing in the TTL in the vicinity of the subtropical jets and in the outflow regions of convection)
- Other options are still possible:
 - radiative lofting via cirrus clouds (Corti et al., 2006)
 - unresolved subgrid convection (Tiedtke at al., 1998)
 - overshooting convection
- First 5-years CLaMS simulations with CO₂, CH₄ produce reliable transport (tracer distributions, age of air, tape-recorder signatures...).
- This indicates that mainly diffusive (and not advective) fluxes effectively transport the tracer gases across the TTL

Implications for the tape-recorder effect

Seasonality of the permeability through the STJ

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft $\theta = 380 \text{ K}$

Seasonality of the permeability through the STJ

Summer versus winter

Summer versus winter

Mass conservation

Mass conservation not valid in ζ -coordinates

- "empty" regions in pure trajectory calculations
- removing these regions does not (significantly) reduce the mixing in CLaMS
- ECMWF mean meridional (polewards) velocities are probably too strong
- ECMWF mean vertical tropical updraft between 360 and 380 K also probably too strong

