Modelling disturbed stratospheric Chemistry during solar induced NOx Intrusions observed by MIPAS-ENVISAT

Thomas Reddmann, Thomas v. Clarmann, Wolfgang Kouker, Roland Ruhnke, Gabriele Stiller, Stefan Versick, and Roland Uhl Institut für Meteorologie und Klimaforschung, Universität Karlsruhe und Forschungszentrum und Universität Karlsruhe, Germany

> Bernd Funke and Manuel Lopez-Puertas, Instituto de Astrofisica de Andalucia, Granada

Motivation

- Possible solar influence on climate via amplification mechanism within the stratosphere
- Interference through radiative active gases, especially ozone
- Direct effects through heating
- Indirect effects through change in chemistry
 - Direct by radiation and particle interaction
 - Indirect by mesospheric NOx intrusions
- Change in dynamics to be translated to the troposphere

Evaluation through combination and comparison of

 MIPAS-ENVISAT observations

CTM-modelling

MIPAS instrument

Michelson interferometer launched on 1 \bullet March 2002 on ENVISAT (sunsynchronous polar orbit, 98.5°). at 0.035 cm⁻¹ in 4.5 s. Sensitivity: $4-30 \text{ nW}/(\text{cm}^2 \text{ sr cm}^{-1})$. Radiometric accuracy: 1-3 % (4-15µm). Limb, altitude coverage: 6-68 km at 3 km steps in 85 s. (6-170 km) 72 profiles/orbit; ~1000 profiles/day Continuous measurements Sep 2002-Mar 2004. Campaigns mode in 2005 (RR) (30-40%) Nominal obs. 2006 on ... (40-80%)

MIPAS sees particle effects in the strato-/mesosphere

-IMK

- MIPAS observes effects related to solar proton events (SPEs) (in-situ particle effects) and NOx intrusions transported downward during polar winter
- Good spatial and time coverage with standard product of ESA
- More species and higher accuracy with IMK/IAA retrieval

MANOXUVA

CAWSES

Description of the KASIMA model

- Euler and spectral, diagnostic and prognostic
- vertical range 7 120 km, vertical resolution variable with height
- horizontal resolution T21 (5.6° x5.6°)
- ECMWF analyses in combination with trend of prognostic part (T, Div, Vort nudged to analyses; below 17.5 km CTM); operational analyses after Sep 2003, ERA-40 before
- prognostic part uses physical parameterisation of net heating rates and breaking gravity waves
- Chemistry (108 reactions, 38 substances, heterogeneous reactions) up to 90 km
- On-line fast-j2 (vectorized) + Lyman-a
- Mixing ratios of source gases according WMO

Applications

- Seasonal studies of transport and comparison with observations
- Polar chemistry,
- NOy budget in the lower stratosphere
- Multi-annual integrations with long-lived tracers
- Studies of SF6 with mesospheric chemistry

MANOXUVA

Performance of the model: long term simulations of ozone

MANOXUVA

CAWSES

Solar Proton Event(s)

HOx related chemistry: observation of H₂O₂

- Retrieval of H_2O_2 for better estimation of HOx related chemistry effects (preliminary results) HOx cycle. Photochemical equilibrium with OH: OH + OH + M \rightarrow H_2O_2 + M H_2O_2 + hv (longwave) \rightarrow 2 OH
- Comparison with model: production of HOx via ionisation rates calculated on basis of GOES extrapolated flux, Bethe-Bloch and standard efficiencies for HOx/ionis.

HOCI: comparison with MIPAS

OH + HCl \implies H₂O + Cl Cl + O₃ \implies ClO + O₂ ClO + HO₂ \implies HOCl + O₂

- possible estimation of HOx
- good agreement with HOCI
- problems with HNO3

MANOXUVA

NOx intrusions and long term effects

NOx intrusions and long term effects

- Two types of NO₂ enhancements are seen in data:
 - thermospheric origin with enhancements in the mesosphere only in the arctic night
 - global enhancements in the mesosphere and stratosphere as a aftermath of solar proton events (SPE)
- ESA data in the mesosphere only available during phases of enhanced NOx
- Use MIPAS NO2 night to prescribe NOx
- Only above ~55 km as a disturbance
- Compare with reference run
- Fixed heating rates (chemistry effects)

Using data in the model

- We use NO₂ observation during night as a proxy for NO by sampling several days
- Because of the low frequency of MIPAS observations, as a compromise 5 days averages are used; not zonal means
- Data are interpolated to a grid
- Interpolation is done in a form of modified inverse distance weighting:

 $\begin{array}{ll} g_{j} = \sum w_{ij} \; y_{i} & \text{g: gridded data at gridpoint } x_{j} \; ; \; y_{i} \\ \text{observation at } x_{i} \\ w_{ij} \sim 1 \; / \; 1 \; + \; (d_{ij} \; / \; I \;)^{p} \end{array}$

 $d_{ij} = d(x_j, x_i)$: distance on sphere of gridpoint and observation, aspect ratio vertical to horizontal about 100, p some exponent (here p=8), l some characteristic length (about 200 km) parameters used result from tests and somewhat subjective

Sampled data

Interpolated data

NOx in the model and in observations

Antarctic winter 2003

Correlations Observations vs. Model

Effect of NOx intrusion on correlation for stratosphere 50 days after initialization 2003 DOY 180. Only coincident data are used ($|\Delta t| < 30$ min)

Correlations Observations vs. Model

Effect of NOx intrusion on correlation for stratosphere winter 2003/2004 DOY 30 -80. Only coincident data are used ($|\Delta t| < 30 \text{ min}$)

Problems with dynamically very active winter 2003/2004

MANOXUVA CAWSES

HNO₃ buildup through ion cluster chemistry

- MIPAS data show strong HNO₃ enhancement in Antarctic and Arctic winters (see analysis of Orsolini et al. 2004 for winter 2003/2004)
- Has been also observed by CLAES
- Even in zonal mean present till January
- Missing in model
- Ion mechanism (Böhringer etal)?

- Simplified approach of de Zafra et al.
- Ion reaction $N_2O_5 + H^+.(H_2O)_n \rightarrow H^+(H_2O)_{n-1} + 2HNO_3$ (only for z > 40km)

Effects of water ion clusters on NOy

- Ion clusters can provide HNO3 secondary maximum
- Small effects on total NOy and ozone

HN03

HNO3 in the model and in observations

Antarctic winter 2003 (see also analysis of Funke et al. and Stiller et al.)

HNO3 in the model and in observations

Early Arctic winter 2003/2004

Effect on total NOy

FIMK

MANOXUVA

NOx as a source for N2O

N2O from

N + NO2 -> N2O + O

In-situ production of N during SPE

- Quasi In-situ produced N during aurora events?
- Effect for tracer-tracer correlation studies?

N2O MIPAS-ENVISAT > 60N (ppb)

Ozone

Effect on ozone is not very obvious on the long term

Additional ozone loss

Midlat effects in ozone

Multidecadal simulations and search for solar signal

Long-term variation of NOx and effects on O3

Another mystery

Signatures of UV variability?

HALOE - MODEL

Summary:

- MIPAS provides an extensive dataset for chemistry studies after SPEs
- MIPAS data can be used to prescribe NOx in KASIMA's polar meso/stratosphere and to estimate influence of NOx intrusions on chemistry
- Important effects on ozone restricted to polar latitudes. Trend analysis for high latitudes may be affected!
- Observed HNO₃ enhancements can be qualitatively reproduced when introducing HNO₃ buildup via H₂O cluster ions
- Open questions:
 - Interplay of in-situ production and dynamics in MLT for aurora effects
 - Downward transport during winter
 - Understand buildup of HNO3 quantitatively
 - The buildup of N2O
 - Relative contribution of EPP and UV for $\Delta O3$ on longer timescales

Thank you !

Particle precipitation, ionization and radical production

fast

slow

- Energy loss of energetic particles in the atmosphere by ionization, N2+, and subsequent production of NO+
- Recombination of N2+ or NO+ or charge exchange reaction yield N(2D, 4S)
- N(2D) + O2 -> NO + O

N(4S) + NO -> N2 + O N(4S) + O2 -> NO + O

- Net effect is the production of NOx in the lower thermosphere/mesosphere
- Production of HOx in the meso-/stratosphere via water cluster ions

See Brasseur Solomon 2005

Result: NOx and HOx enhancements in the middle atmosphere disturbing regular chemistry

MANOXUVA

General transport properties of the model

Zonal mean CH4 (ppm) for period 2003 DOY 180-200

Descent in Arctic vortex winter 2003/2004(> 60N)

CH4 MIPAS-ENVISAT-ESA

CH4

HNO3 in the model and in observations

Late Arctic winter 2003/2004

Effect of NOx intrusions on total NOy

MANOXUVA CAWSES

Ozone: Simulations vs. Observations example antarctic winter, DOY 240 - 270

MANOXUVA CAWSES

Correlation late winter 2003/2004 > 60°N DOY 40 - 80

MANOXUVA

Polar ozone

