Water vapour in the tropics

C. Schiller, D. Brunner, T. Corti, P. Konopka, G. Günther, M. Krämer, R. Müller, T. Peter, P. Preusse, F. Santos, N. Spelten

Tropical experiments with the M55 and Falcon aircraft

Jan-Feb 2005

Feb-Mar 1999

H₂O vertical distribution in the tropics

in der Helmholtz-Gemeinschaft

The H₂O tape recorder from in situ sounding

Head of tape recorder below 410 K: strong regional signal overlaid Stratosphere: consistent seasonal cycle, but AMMA (NH) higher

RH_i during tropical aircraft experiments

lowest H₂O m.r. (< 2 ppmv), high RHi during SCOUT-O3 (and APE-THESEO) convection above TP: injection of particles in low RHi environment only few cases of saturation at TP during TROCCINOX and AMMA Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

The Kelvin wave during SCOUT-O3

60E

90E

120E

longitude (deg)

(10 November vs. 19 Novemver)

150E

180E

Brunner et al.

Mininum values of H_2O_{traj} on all flights (10% percentiles of all values < 10 ppmv)

Scatter plot of H₂O_{trai} versus H₂O observed by FISH

> Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

FISH

Brunner et al.

Impact of T_{min} along trajectories on H₂O

-200

-150

-100

-50

0

Impact of T_{min} along trajectories on H₂O

Impact of convection on H₂O: the shooting gun

Ice water content in cirrus clouds above the cold point

Climatology of ice water content in cirrus clouds

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Impact of convection over West Africa: The smoking gun

- \rightarrow 1 Hector event: 60 t H₂O into stratosphere
- → About 300 comparable events per day in the tropics [Liu and Zipser, 2005]
- \rightarrow They cover 1500 times the area of Hector
- → Convective transport: 2×10⁴ t (upper limit: 10⁵ t) H₂O per day
- → Compared to a total input of 10⁶ t H₂O per day from large scale upwelling
- \rightarrow 2-10 % of total H₂O input into stratosphere

Corti et al.

seasonality of H_2O input observed head of tape recorder variable with region

Moistening of the TTL (and above)

particles with IWC of up to 10 ppmv injected by deep convection up to 420 ${\rm K}$

during AMMA moistening by aged convection (>12 h) still detectable **but**: contribution on global scale only several percent exchange with subtropics

Drying of the TTL

 $H_2O < 2 \text{ ppmv}$ at TP during SCOUT-O3 and APE-THESEO frequently RHi > 100% and cirrus \rightarrow ongoing dehydration minimum H_2O modulated by Kelvin wave during SCOUT-O3 H_2O frequently determined by T_{min} during preceeding 10 days hungs entrum Jülich