Highlights of First Year of Data From the OMPS-Limb Instrument on Suomi/NPP Satellite

P. K. Bhartia, Glen Jaross, Zhong Chen, Ghassan Taha, Leslie Moy, Steven Taylor & Didier Rault

> NASA Goddard Space Flight Center Greenbelt, Maryland, USA

Status

- L1/L2 data released on Oct, 1, 2012
 - Ozone from central slit only, no aerosols
 - Tangent heights of large aperture image was lowered by 1.35 km (no dynamic corrn).
- Issues with Release 1 Data
 - ~0.6 nm λ error @ 310 nm, varies with λ (contact <u>matthew.deland@ssaihq.com</u> for recent updates and impact on O₃ profile)
 - Small and large aperture (aka high gain/low gain) images do not match well.

Study presented in this talk is designed to plan future releases

Radiance Study Objectives

- Find causes of large radiance residuals from the L2 algorithm.
- Improve altitude registration methods.
- Isolate systematic errors in measured and calculated radiances.
- Evaluate accuracy of MLS and NCEP GPH profiles.
- Better understand information content of measurements.

Radiance Analysis Methodology

- Radiance Simulation
 - Bass & Paur cross-sections
 - Atlas SUSIM solar irradiance adj using OMPS data
 - Scalar radiative xfer code
 - MLS O₃, temp and GPH profiles
 - OMPS-NP reflectivity
 - NO₂ from climatology. No aerosols
- Data Analyzed
 - Ungridded, λ -corrected, UV (290-350 nm) radiances from large aperture (high gain) images only.
 - April, 2012 only

Large Radiance residuals Primary Causes

- Wavelength error
- Error in solar irradiance spectrum assumed in calculating radiances in L2 S/W
 - No impact on O_3 profiles, since they are retrieved using altitude-normalized radiances, but produces residuals.
- T and GPH profiles in upper strat & mesosphere are not of high quality
 - Doesn't impact O₃ density vs alt profiles, but produces residuals, and impacts MR vs press profiles

Top 2 items will be fixed in next release. In future releases radiance residuals in UV may be used to improve NCEP T/GPH profiles.

Meas/Calc Rad Comp 75S, 59.5 km

Altitude Reg. using 350 nm Radiances (The "RSAS" method, proposed in 1993)

- 30/20 km radiance ratio varies by ~10%/km.
- Not affected by calibration and reflectivity but affected by scene inhomogeneity along LOS, and strat aerosols.
- Technique works best in S. Polar regions.

350 nm meas-calc log of radiance vs. TH Zonal Mean, April 2, 2012

~300m OMPS TH error or MLS GPH error?

MLS GPH uncertainties

 Z*	Region	Resolution Vert. × Horiz. / km	Precision ^a / meters	Modeled bias uncertainty / m	Observed bias uncertainty / m	Comments
	<0.001 hPa		2000		27	Unsuitable for scientif c use
	0.001 hPa	$10-13 \times 220$	± 110	700 ± 150	-450	
	0.01 hPa	8–12 × 185	± 85	600 ± 100	-100	
64 kn	n 0.1 hPa	6 × 165	± 60	500 ± 150	0	
48 kn	n 1 hPa	7 × 165	± 45	300±100	100	
32 kn	n 10hPa	4.3 × 165	± 35	200±100	100	
16 kn	n 100 hPa	5.2 × 165	± 30	150 ± 100	150	
	261 hPa	5.3×170	± 35	100 ± 150	150	
1	000-316 hPa		_	s 		Unsuitable for scientif c use

The MLS team believes that they have 200-300m "bias" in GPH in 1-10hPa region. Is this what OMPS is seeing?

350 nm Meas-Calc ZM vs Lat

Alt Registration using 305 nm

305 nm not affected by reflectivity & scalar/vector diif

305 nm meas-calc ZM vs lat

Comparison of ZM at alt of max O₃ abs

Difference is partly due to MLS GPH error. Also scalar code error.

OH Emission Signal

Satellite measurements of hydroxyl in the mesosphere

Robert R. Conway¹, Michael H. Stevens¹, Joel G. Cardon², Scott E. Zasadil², Charles M. Brown¹, Jeff S. Morrill¹, and George H. Mount³

Conclusions & Future Plans

- With correct λ s measured and calculated sunnormalized radiances agree well.
- Remaining differences are at least partly due to MLS GPH error
 - Error in T/GPH affect MLS density vs alt profiles but not their MR vs press profiles, vice-versa for OMPS.
- Release 2 plans (release date: Oct 1, 2013)
 - L1: Better λ s, will not mix small and large aperture data, no further TH corrn.
 - L2: increase vertical smoothing, remove OH λ s, provide aerosol profiles, O₃ from central slit only.

BACKUP SLIDES

LP Focal Plan Schematic

Designed for sequencing HG Long/LG long/HG Short/LG short: 1: 4.5: 7: 4.5 Total dynamic range gain: x140

Optical distortions in HG Image Variation of wavelength with TH

Optical distortions in HG Image Variation of TH with wavelength

Wavelength Under-sampling

Without under-sampling corrn interpolation error can be as large as 3%

Scalar radiance error at TH = 40 km, R = 0.3

% change in 350 nm radiance due to aerosols

