# Investigation of Horizontal Inhomogeneity Effects on Aerosol Limb Retrievals Using 2D Radiative Transfer Simulations

Steffen Dörner, Janis Puķīte, Sven Kühl, Marloes Penning de Vries, Thomas



#### 19<sup>th</sup> June 2013

## Stratospheric Particles



<sup>1</sup> Source for particle size/life times: [Liu et al., 2001; Schreiner et al. 2001; Thomason, L. W., and T. Peter 2006]

#### Influence on:

- Ozone Layer (heterogeneous chemistry)
- Radiation Budget

S. Dörner et al. (MPIC Mainz)



MAX-PLANCK-INSTITU

#### Example for Horizontal Inhomogeneity

SCIAMACHY measurements of a volcanic plume

- : Limb Color-Index at a tangent height of 18.5 km (tangent point coord.)
- = : Nadir SO<sub>2</sub> column density



An onion peeling approach to retrieve Aerosol extinction

$$I_{sim}(\lambda, TH) \stackrel{!}{=} I_{meas}(\lambda, TH)$$

• Wavelength dependent variation of the extinction

 $\Rightarrow$  Single wavelength retrieval



An onion peeling approach to retrieve Aerosol extinction

$$\frac{I_{\mathsf{sim}}(\lambda,\mathsf{TH})}{I_{\mathsf{sim}}(\lambda,\mathsf{TH}_{\mathsf{ref}})} \stackrel{!}{=} \frac{I_{\mathsf{meas}}(\lambda,\mathsf{TH})}{I_{\mathsf{meas}}(\lambda,\mathsf{TH}_{\mathsf{ref}})}$$

- Wavelength dependent variation of the extinction
  - $\Rightarrow$  Single wavelength retrieval
- Comparability of instrumental calibration and simulation output
  - $\Rightarrow$  Keep tangent height normalization!



An onion peeling approach to retrieve Aerosol extinction

$$\frac{I_{\mathsf{sim}}(\lambda, \mathsf{TH})}{I_{\mathsf{sim}}(\lambda, \mathsf{TH}_{\mathsf{ref}})} \stackrel{!}{=} \frac{I_{\mathsf{meas}}(\lambda, \mathsf{TH})}{I_{\mathsf{meas}}(\lambda, \mathsf{TH}_{\mathsf{ref}})}$$

- Wavelength dependent variation of the extinction
  - $\Rightarrow$  Single wavelength retrieval
- Comparability of instrumental calibration and simulation output
  - $\Rightarrow$  Keep tangent height normalization!

Retrieval of the extinction  $\varepsilon$  at each tangent height (*TH*), starting at the layer below the reference tangent height (TH<sub>ref</sub>) using the following approach:

$$\frac{\partial I(TH)}{\partial \text{ext}(TH)} = \underbrace{\left(\frac{I_{\text{sim/meas}}(TH)}{I_{\text{sim/meas}}(TH_{\text{ref}})} - \frac{I_{\text{sim,ray}}(TH)}{I_{\text{sim,ray}}(TH_{\text{ref}})}\right)}_{\Delta I_{\text{sim/meas}}(TH)} \cdot (\varepsilon (TH) - \varepsilon_{\text{ray}}(TH))^{-1}$$
Iterative process starting at  $\varepsilon_0 = 0 \text{ km}^{-1}$ , using
$$\varepsilon_{n+1} = \Delta I_{\text{meas}} \cdot \frac{\varepsilon_n}{\Delta I_{\text{sim}}}$$

MAX-PLANCK-INSTITUT FÜR CHEMIE

Retrieval result:

- Retrieve extinction profile from measured intensity profile (this presentation)
- Ångstrom coefficient can be determined using extinction profiles at various wavelengths (**future work**)



Retrieval result:

- Retrieve extinction profile from measured intensity profile (this presentation)
- Ångstrom coefficient can be determined using extinction profiles at various wavelengths (**future work**)

Assumptions/Approximations:

- Phase function is approximated by a Henyey-Greenstein function using a *known* asymmetry parameter
- Effective albedo below the lowest retrieval altitude is given by collocated nadir measurements
- Aerosol extinction at a specific layer does not affect the layers above



#### **Bottom-Up Influence of Aerosol Extinction**

SZA=30° SRAA=60° WV=750 nm Extinction Box Profile at 18 to 21 km



#### **Bottom-Up Influence of Aerosol Extinction**

SZA=30° SRAA=60° WV=750 nm Extinction Box Profile at 18 to 21 km



#### **Self-Validation Tests**

SZA=30° SRAA=60° WV=750 nm Gaussian Shaped Profile



#### **Self-Validation Tests**

SZA=30° SRAA=60° WV=750 nm Box Shaped Profile



#### Summary: Onion Peeling Method

 The retrieval is able to retrieve the correct extinction profiles from simulated intensities. (Difference between model input and retrieval output less then 5%, not varying with viewing geometry)

• The lower boundary of the applicability of the retrieval is about 10 to 13 km. (Changing with wavelength and viewing geometry)

 $\Rightarrow$  with this method the extinction profile between 13 and 30 km can be retrieved.



- Intensity profiles were simulated for different horizontal distributions.
- Results will be shown for running the retrieval with two approaches:
  - horizontal homogeneity (current retrieval version)
  - correct horizontal distribution



SZA=30° SRAA=60° WV=750 nm Symmetric, Homogeneous Approach



SZA=30° SRAA=60° WV=750 nm Symmetric, Horiz. Distribution



SZA=30° SRAA=60° WV=750 nm Asymmetric, Homogeneous Approach



SZA=30° SRAA=60° WV=750 nm Asymmetric, Horiz. Distribution



SZA=30° SRAA=60° WV=750 nm Asymmetric Narrow, Homogeneous Approach



SZA=30° SRAA=60° WV=750 nm Asymmetric Narrow, Horiz. Distribution



SZA=30° SRAA=60° WV=750 nm Asymmetric Narrow, Horiz. Distrib. and TH shifted



- Investigation of the plume that originated from the first eruption on the 13<sup>th</sup> June 2011
- Aerosol Indices of SCIAMACHY, OMI and GOME-2 measurements in nadir geometry indicate H<sub>2</sub>SO<sub>4</sub> droplets and negligible amounts of ash particles (Penning de Vries et al., in prep.)
- Phase function is approximated by a Henyey Greenstein function with an asymmetry parameter of 0.6, representing small aerosol droplets
- Retrieval is assuming a homogeneous layer



13<sup>th</sup> June 2011 - About 12 hours after the eruption

- : Limb Color-Index at a tangent height of 18.5 km (tangent point coord.)
- Nadir SO<sub>2</sub> column density



MAX-PLANCK-INSTITUT

13<sup>th</sup> June 2011 - About 12 hours after the eruption

- : Limb Color-Index at a tangent height of 18.5 km (tangent point coord.)
- Nadir SO<sub>2</sub> column density



MAX-PLANCK-INSTITUT

14<sup>th</sup> June 2011 - About 36 hours after the eruption

- : Limb Color-Index at a tangent height of 18.5 km (tangent point coord.)
- Nadir SO<sub>2</sub> column density



14<sup>th</sup> June 2011 - About 36 hours after the eruption

- : Limb Color-Index at a tangent height of 18.5 km (tangent point coord.)
- Nadir SO<sub>2</sub> column density



#### Summary

- Onion peeling approach is generally working
- Inhomogeneous aerosol layers have two major effects on a retrieval that assumes horizontal homogeneity:
  - Underestimation of the absolute extinction ( $\Rightarrow$  Aerosol optical depth)
  - Underestimation of the top height of an aerosol layer.
- Larger retrieval uncertainties for narrow inhomogeneous layers (e.g. volcanic plumes) with distances of more than 100 km to the tangent point



#### Thanks for your attention!

Thanks to Tim Deutschmann for his work and support on McArtim.

Questions are welcome!



## **Retrieval Sensitivity Range**





#### **Retrieval Sensitivity Range**





MAX-PLANCK-INSTITU

#### **Retrieval Sensitivity Range**

SZA=30° SRAA=60° WV=750 nm Extinction Box Profile at 18 to 21 km Albedo = 0.2



MAX-PLANCK-INSTITU

#### Example for Horizontal Inhomogeneity

Different limb LOS at an altitude of 19.5 km



Source: Penning de Vries et al., in prep