Evaluation of ClO+ HO₂ -> HOCl + O₂ reaction in the atmosphere by SMILES observations

<u>K. Kuribayashi^{1,2}</u>, H. Sagawa², R. Lehmann³, T. O. Sato^{1,2}, and Y. Kasai^{1,2}

¹Tokyo Institute of Technology ²National Institute of Information and Communications Technology ³AlfredWegener Institute for Polar and Marine Research

The 7th International Atmospheric Limb Conference and Workshop, 17-19, 6, 2013

The role of ClO + HO₂ \rightarrow HOCl + O₂ reaction in the stratospheric chemistry

The role of ClO + HO₂ \rightarrow HOCl + O₂ reaction in the stratospheric chemistry

The role of ClO + HO₂ \rightarrow HOCl + O₂ reaction in the stratospheric chemistry

The quantitative understanding of the rate constant of ClO+ HO₂ \rightarrow HOCl + O₂ is essential for the understanding of the effect of HOCl.

Current summary of k(T)of CIO + HO₂ \rightarrow HOCI + O₂ reaction

Approximately two times different!!

Approximately two times different!!

These large discrepancies in laboratory measurements are caused by the difficulty of the radical (ClO) – radical (HO₂) reaction in larboratory

Current summary of k(T)of ClO + HO₂ \rightarrow HOCl + O₂ reaction

Current summary of k(T)of ClO + HO₂ \rightarrow HOCl + O₂ reaction

The "Purity" means that only CIO + HO₂ \rightarrow HOCl + O₂ reaction modifies the concentration of CIO and HOCI, and no competitive reaction exists.

- The "Purity" means that only ClO + HO₂ \rightarrow HOCl + O₂ reaction modifies the concentration of ClO and HOCl, and no competitive reaction exists.
- "Is there the pure CIO + HO₂ \rightarrow HOCl + O₂ reaction period in actual atmosphere? "

- The "Purity" means that only CIO + HO₂ \rightarrow HOCl + O₂ reaction modifies the concentration of CIO and HOCI, and no competitive reaction exists.
- "Is there the pure CIO + HO₂ \rightarrow HOCl + O₂ reaction period in actual atmosphere? "

- The "Purity" means that only ClO + HO₂ \rightarrow HOCl + O₂ reaction modifies the concentration of ClO and HOCl, and no competitive reaction exists.
- "Is there the pure CIO + $HO_2 \rightarrow HOCI + O_2$ reaction period in actual

The "Purity" means that only ClO + HO₂ \rightarrow HOCl + O₂ reaction modifies the concentration of ClO and HOCl, and no competitive reaction exists.

The "Purity" means that only ClO + HO₂ \rightarrow HOCl + O₂ reaction modifies the concentration of ClO and HOCl, and no competitive reaction exists.

tion Analysis

Diurnal variation of ClO, HO₂, and HOCl by SMILES observations

SMILES is the only instrument to reveal the observation of the diurnal variation of CIO, HO₂, and HOCl simultaneously by its high-sensitivity.

Data condition

Latitude : 20°S - 40°S

Height : 0.28 hPa (58 km)

Period : Feb. - Apr., 2010

Temperature : $245.0 \pm 1.3 (1\sigma) \text{ K}$ Data product :

SMILES NICT level-2 product v2.1.5

Small dots : Raw observation data Large dots : bin of 3.75 minutes roduction Analysis

Method of evaluation of the "pure" reaction period from SMILES observation

In the "pure" CIO + HO₂ \rightarrow HOCl + O₂ reaction period

$$\frac{d[Cl0]}{dt} + \frac{d[HOCl]}{dt} = 0$$
 (1)
Necessary condition in actual atmosphere

roduction Analysis

Method of evaluation of the "pure" reaction period from SMILES observation

$$\frac{d[\text{ClO}]}{dt} + \frac{d[\text{HOCl}]}{dt} = 0 \quad (1)$$

Necessary condition in actual atmosphere

Consistency between two rate constants, HOCI production and CIO loss

oduction Analysis

Method of evaluation of the "pure" reaction period from SMILES observation

$$\frac{d[ClO]}{dt} + \frac{d[HOCl]}{dt} = 0 \quad (1)$$

Necessary condition in actual atmosphere

Consistency between two rate constants, HOCI production and CIO loss

Rate constant of HOCI production, k_1 $\frac{d[HOCI]}{dt} = k_1[CIO][HO2]$ (2)Rate constant of CIO loss, k_1' $\frac{d[CIO]}{dt} = -k_1'[CIO][HO2]$ (3) $\Delta k = |k_1 - k_1'| = 0$ $\frac{d[CIO]}{dt} + \frac{d[HOCI]}{dt} = 0$ is fulfilled.6

Calculation of the rate constant of HOCl production, k_1

Calculation of the rate constant of HOCl production, k_1

 Y_0 and k_1 are optimized to minimize χ . We calculated each time interval.

Time dependence of the rate constant of HOCI production, k_1

Time dependence of the rate constant of CIO loss, k_1'

Time dependence of the difference of two rate constants, k_1 and k_1'

Determination of the "pure" CIO + HO₂ \rightarrow HOCl + O₂ reaction period

Time dependence of $\Delta k = |k_1 - k_1'|$

Data condition Latitude : 20° S - 40° S Height : 0.28 hPa (58 km) Period : Feb. - Apr., 2010 Temperature : $245.0 \pm 1.3 (1\sigma)$ K Data products : NICT v2.1.5

11

Determination of the "pure" CIO + HO₂ \rightarrow HOCl + O₂ reaction period

Time dependence of $\Delta k = |k_1 - k_1'|$

We determined that there was "pure" reaction period. The local time interval of LT 18:30 - LT 04:00 is the time in which the reaction ClO + HO₂ \rightarrow HOCl + O₂ purely happens in the Cly chemistry in the lower mesosphere.

Determination of the rate constant of CIO + HO₂ \rightarrow HOCl + O₂ reaction

Probability of k_1 in the "pure" reaction period in $\Delta k \leq 0.1$ [× 10¹² cm3/molecule s]

12

 $\Delta \mathbf{k} \simeq \mathbf{0}$

40

Diurnal variation of calculated ClO, HOCl, and ClO + HOCl by SMILES observations

 $k_1(245K) = 7.73 \pm 0.26(1\sigma) [\times 10^{12} \text{ cm}^3/\text{molecule s}]$

Time interval : LT 18:30 ~ LT 04:00

Small dots : Raw observation data Large dots : bin of 3.75 minutes Solid line: Calculated value

Comparison with previous works

- Pressure dependence of ClO + HO₂ \rightarrow HOCl + O₂ reaction
- Xu et al. (2003) pointed from ab initio calculations;
- $CIO + HO_2 \rightarrow HOCI + O_2 (R1)$
- $\begin{array}{c} {\sf CIO} + {\sf HO}_2 + {\sf M} \rightarrow {\sf HOOOCI} + {\sf M} \quad ({\sf R2}) \\ {\rm reaction\ intermediate} \end{array}$

P = 0.28 [hPa] (0.21 [Torr]) T = 245.0 [K]	Rate constant [$ imes$ 10 ¹² cm ³ /molecule s]
Xu et al. (2003)	
$CIO + HO_2 \rightarrow HOCI + O_2$ (R1)	7.51
$CIO + HO_2 + M \rightarrow HOOOCI + M (R2)$	0.0021
SMILES k ₁	7.73 <u>+</u> 0.26(1σ)

The value of k_1 from SMILES is consistent with that of from Xu et al. (2003) within 1σ .

Summary of k(T)of ClO + HO₂ \rightarrow HOCl + O₂ reaction with pressure dependence

Pressure condition in laboratory measurements

Laboratory measurements	P [Torr]
Stimpfle et al. (1979)	0.8 - 3.4
Nickolaisen et al.	50 – 700
Knight et al. (2000)	1.1 - 1.7
Hickson et al. (2007)	1.5

Summary of k(T)of ClO + HO₂ \rightarrow HOCl + O₂ reaction with pressure dependence

Pressure condition in laboratory measurements

Laboratory measurements	P [Torr]	18 — Stimpfle et al., 197 JPL2011	/9
Stimpfle et al. (1979)	0.8 - 3.4	୍ର 16 କ୍ରୁ 16 – – Xu et al., 2003 (40	2000 [] 0 Torr)
Nickolaisen et al.	50 – 700	High pressure 14 High pressure 14 High pressure 14 High pressure 14 High pressure 14 High pressure	7
Knight et al. (2000)	1.1 - 1.7	$\underset{1}{\mathbb{F}} = \{ \text{(Dot line)} \\ \underset{1}{\mathbb{F}} = 12 \\ \end{bmatrix} $ SMILES k_1	
Hickson et al. (2007)	1.5		
+ ab initio calcula Xu et al. (2000)	ations	Below pressure (Solid line)	
$\frac{1}{400} \text{ Torr}$ $+ \text{ SMILES } k_1$ 0.21 Torr	The valu (2007) a The larg pressure	ue of SMILES k_1 is close to these of Hickson et al. and Xu et al. (2000) of 1Torr at 245K. e discrepancies of k (T) might be caused by the e dependence.	270

Conclusion

- We evaluated the purity of ClO + HO₂ -> HOCl + O₂ reaction using two rate constants, HOCl production and ClO loss.
- The condition was in the mid-latitude between 20°S and 40°S at a temperature range 5 of 245 +- 1.4(1σ) K, in the period from February to April, 2010.
- We derived from the SMILES dataset that the local time interval of LT 18:30 LT 04:00 is the time in which the reaction ClO + HO₂ -> HOCl + O₂ purely happens in the Cly chemistry in the lower mesosphere.
- The rate constant of the reaction, ClO + HO₂ -> HOCl + O₂, is obtained to be k1 = 7.73 +- 0.26(1 σ)[× 10¹² cm³/molecule s] at 245 K from SMILES observation data.
- The large discrepancies of *k*(T) might be caused by the pressure dependence.