Twelve years of Arctic ozone depletion observed by Odin/SMR

Kazutoshi Sagi, Donal P Murtagh and Joachim Urban

Department of Earth and Space Science CHALMERS UNIVERSITY OF TECHNOLOGY

Polar Ozone Depletion

- Since the early 80's, large scale ozone depletion has been observed in the lower stratosphere in the early spring. (Farman et al., 1985)
- Polar ozone loss is caused by catalytic species, such as Cl, NOx and Br
- The process of depletion is also related to the formation of PSC
- Huge Ozone loss such as Antarctic ozone hall was observed in 2011 winter (Manney et al., Nature, 2011)

Odin/SMR

- Swedish-led satellite, collaborated with Canada, France and Finland
 - OSIRIS (Optical Spectrograph and Infrared Imaging System)
 - SMR (Sub-Millimetre Radiometer)
- launched on February 20, 2001

Long-term observation of stratospheric ozone can be used for trend study

Arctic Ozone depletion

difficult to quantify the ozone depletion over arctic region due to instability of the polar vortex

Stratospheric wind patterns over the winter poles. (a) Antarctic winds on 2006-07-01. (b) Arctic winds on 2007-01-01. The wind data have been obtained from the European Centre for Medium-range Weather Forcasts, ECMWF [John, 2007]

Methodology

Active O3 : Transport + Assimilation

$$O_{3loss} = O_{3active} - O_{3passive}$$

Possible to separate into "transport" and "chemical process" on Ozone VMR variation

DIAMOND model

(Dynamical Isentropic Assimilation Model for Odin Data)

- designed to simulate ozone horizontal transport in lower stratosphere (Rösevall et al., 2008)
- Square grid dedicated for the poles
 - Horizontal Advection
 - Transport on isentropic surfaces
 - Prather transport scheme (Prather, 1986)
 - ECMWF operational winds
 - Vertical Transport
 - 1st order upwind scheme
 - vertical motions calculated using SLIMCAT diabatic heating rate
 - Assimilation
 - Statistical interpolation
 - Modified Kalman Filtering
 - Transported analysis errors

Fig. 2. The shape of the grid used in the DIAMOND model.

Ozone data

- Odin/SMR
 - Retrieved from 501.5 GHz (Chalmers Retrieval Scheme v2.1, Urban et al., 2005)
 - Altitude range and resolution : 18 ~ 50 km, 2.5-3.5 km
 - Systematic Error : < 0.3 ppmv

day of year

Vortex Mean of Ozone

- Diabatic descent inside vortex is visible
- All ozone distributions can be categorized in 3 types
- Cold Winter
 Warm Winter
 intermediate

Vortex Mean of loss

Cold Winter

 Ozone loss starts from beginning of February below 500K

Warm Winter

- major loss starts from beginning of March
- around 650K

Vortex Mean of loss

Cold Winter

 Ozone loss starts from beginning of February below 500K

Warm Winter

- major loss starts from beginning of March
- around 650K

Monthly Average of Chemical ozone depletion for March

Comparison with other Instruments and Methods

Comparison with other Instruments and Methods

Under estimate the loss

•Odin/SMR Ozone biased?

•Due to the under estimate of diabatic descent inside vortex?

Variation of loss

Periodic pattern is similar to QBO in equator

Spectrum of Ozone loss anomaly

Summary

- Odin/SMR is observing stratospheric ozone from 2001
- Arctic chemical ozone losses of Northern winters from 2002 to 2012 were quantified by using DIAMOND model
- Comparison of derived ozone loss in 2004/2005 winter agreed with the other methods in error range
- Losses from our method for all winters are lower than other instruments
- The peak of ozone loss is shown below 500K in cold winter, while it appears higher in warm winter
- Variation of ozone depletions of each winters seems to have similar pattern with QBO

Appendix

How to combine model and measurement ?

- Assimilation is usually used for meteorological prediction
- Measurement ingested into numerical model to estimate the optimal state
- Estimated ozone VMR and assimilation error are given as

$$\hat{x} = \left(\frac{1}{\sigma_{model}^2} + \frac{1}{\sigma_{meas}^2}\right)^{-1} \left(\frac{x_{model}}{\sigma_{model}^2} + \frac{x_{meas}}{\sigma_{meas}^2}\right)$$
$$\sigma = \left(\frac{1}{\sigma_{model}^2} + \frac{1}{\sigma_{meas}^2}\right)^{-1}$$

 Linear growth of error with time can be used to approximate the uncertainties due to the imperfection of transport model and chemical processes in Stratosphere

$$\sigma\left(t + \Delta t\right) = \sigma\left(t\right) + k_{\sigma} \cdot \Delta t$$

Chemical process of Ozone depletion

- Cl2 and HOCl are released by heterogeneous reactions on the surface of PSCs.
- (2) Cold winter (<-80oC) required to form PSCs
- (3) In early spring, CI and CIO are produced by the photo-dissociation of CI2 and HOCI
- (4) CI catalytic destruction cycle
- (5) The cycle stops by reactions to CH4 or NO2

- ¹ ClNO₃ + HCl $\xrightarrow{\text{PSC}}$ Cl₂ + HNO₃ ClNO₃ + H₂O $\xrightarrow{\text{PSC}}$ HOCl + HNO₃ HOCl + HCl $\xrightarrow{\text{PSC}}$ Cl₂ + H₂O
- 3. $Cl_2 + h\nu \longrightarrow 2Cl$ HOCl + $h\nu \longrightarrow OH + Cl$
- 4. $Cl + O_3 \longrightarrow ClO + O_2$ $ClO + ClO \longrightarrow Cl_2O_2 + M$ $ClOOCl + h\nu \longrightarrow Cl + ClOO$ $ClOO + M \longrightarrow Cl + O_2 + M$ $Net : 2O_3 \longrightarrow 3O_2$
- ^{5.} $Cl + CH_4 \longrightarrow HCl + CH_3$ $ClO + NO_2 + M \longrightarrow ClNO_3 + M$

Vertical transport

$$\psi\left(z,t+\varDelta t
ight)=\psi\left(z,t
ight)\left(1-\omegarac{dt}{dz}
ight)+\psi\left(z-\varDelta z,t
ight)\omegarac{dt}{dz}$$

