Characterizing sampling-related uncertainties in stratospheric trace gas climatologies

Matthew Toohey, Thomas von Clarmann, Michaela Hegglin, Susann Tegtmeier, and the SPARC Data Initiative team

7th Atmospheric Limb Conference

18.06.2013

- Monthly zonal mean "climatologies" of stratospheric trace gases can be produced by binning measurements from satellite instruments into monthly, 5° latitude bins (e.g., SPARC Data Initiative).
- Instruments have a wide range of sampling patterns
 - Global daily sample counts from ~10-1000 per day
 - Latitudinal coverage that may vary with time
 - Possibly incomplete coverage of bin space (month, latitude, longitude)

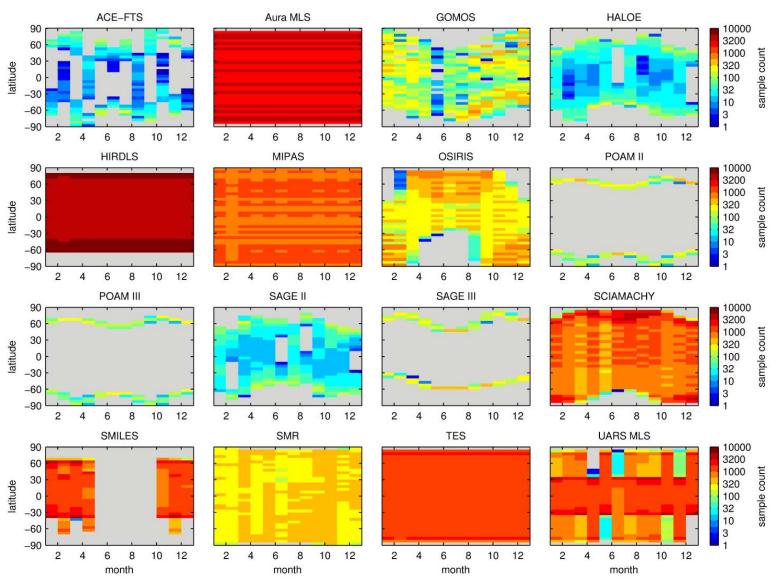
- Sampling biases in stratospheric climatologies
 → How does sampling impact monthly zonal means?
- 2. Sampling and the standard error of the mean $\rightarrow Is \hat{\sigma}_x / \sqrt{N} a$ good estimate of the random error of monthly zonal means?

Method

- Use chemical fields from a coupled chemistry model, (e.g., WACCM, CMAM)
- Sample model fields based on space-time sampling patterns of specific instruments ("satellite simulator")
 - Difference of sample mean and population mean (with full resolution model fields) gives estimate of potential sample bias in climatologies.
 - 2. Repeated resampling of model fields used to estimate of random error in climatologies.

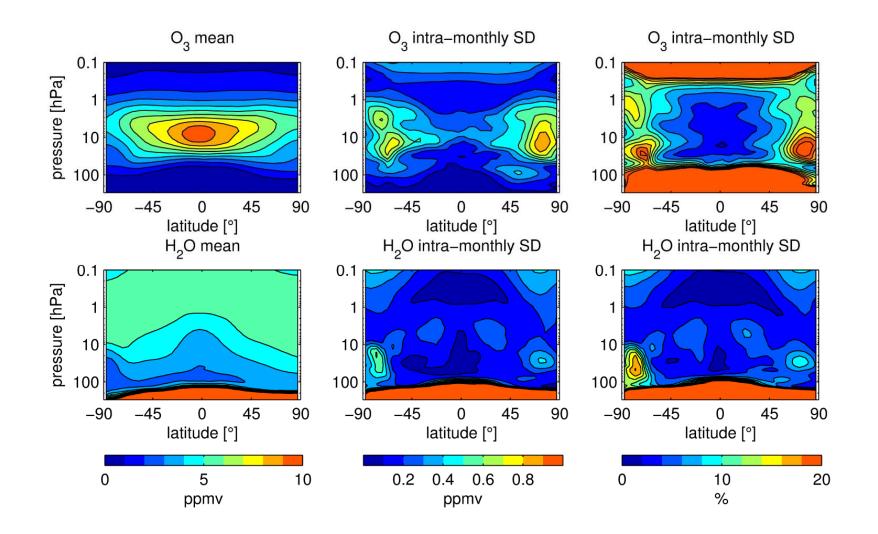
Instrument	Full Name	Sample reference period
CE-FTS	Atmospheric Chemistry Experiment (ACE) - Fourier Transform Spectrometer	2005
ıra MLS	Aura - Microwave Limb Sounder	Jan 2005
OMOS	Global Ozone Monitoring by Occultation of Stars	2003
ALOE	The Halogen Occultation Experiment	1994
RDLS	High Resolution Dynamics Limb Sounder	Sep 2006
IPAS	Michelson Interferometer for Passive Atmospheric Sounding	Jan 2009
SIRIS	Optical Spectrograph and InfraRed Imager System	2009
OAM II	Polar Ozone and Aerosol Measurement II	1995
OAM III	Polar Ozone and Aerosol Measurement III	2001
AGE II	Stratospheric Aerosol and Gas Experiment II	1990
AGE III	Stratospheric Aerosol and Gas Experiment III	2003
CIAMACHY	Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY	2010
MILES	Superconducting Submillimeter-Wave Limb Emission Sounder	Oct 2009 – Apr 2010
MR	Sub-Millimetre Radiometer	2010
ES	Tropospheric Emission Spectrometer	Jul 2007
ARS MLS	UARS - Microwave Limb Sounder	1992

Sampling patterns: sample counts



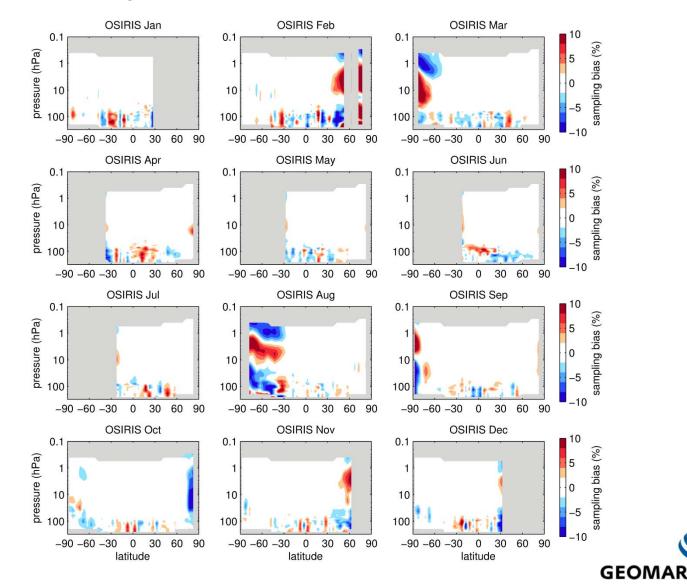
GEOMAR

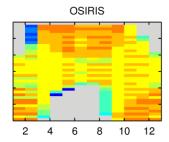
WACCM O₃ and H₂O



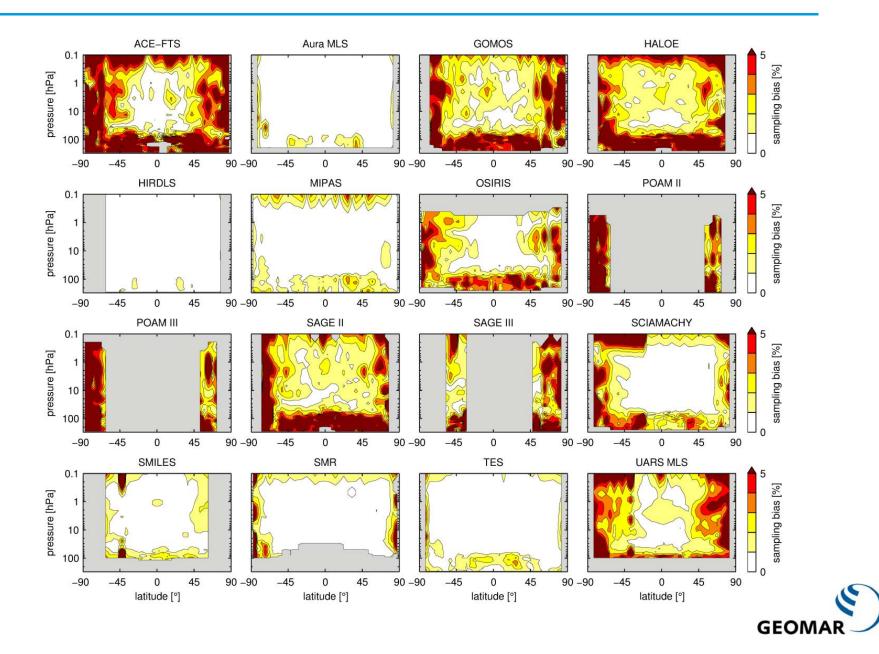
Single Instrument, 12 months of O₃ sampling bias

Sampling bias = sample mean – population mean

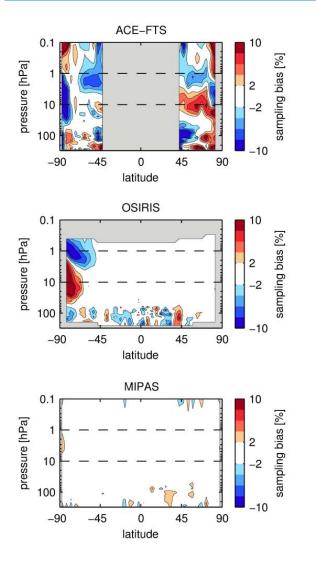


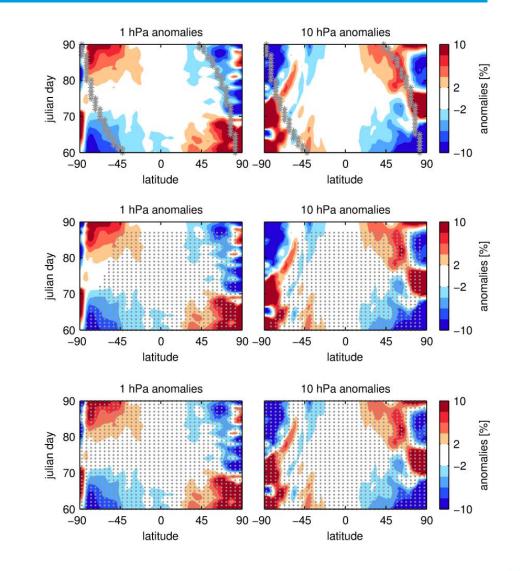


RMS monthly O₃ sampling bias

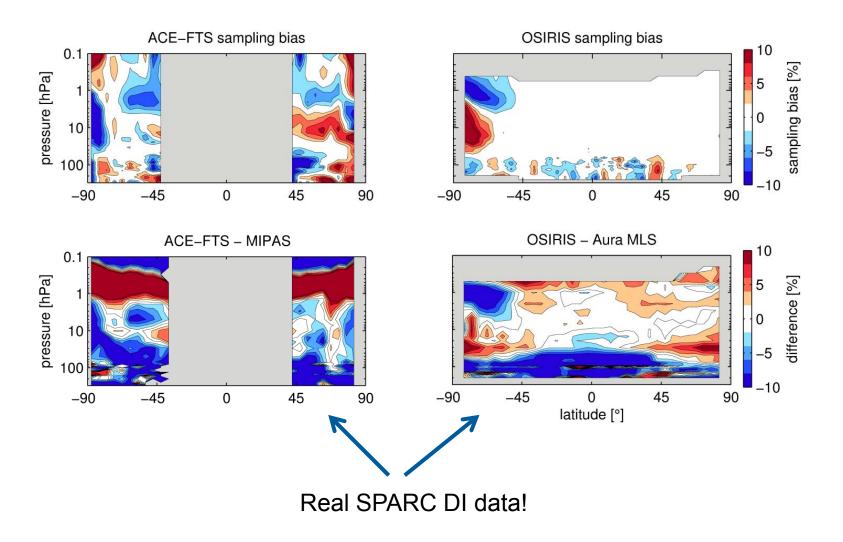


March O₃ case study: impact of temporal non-uniformity

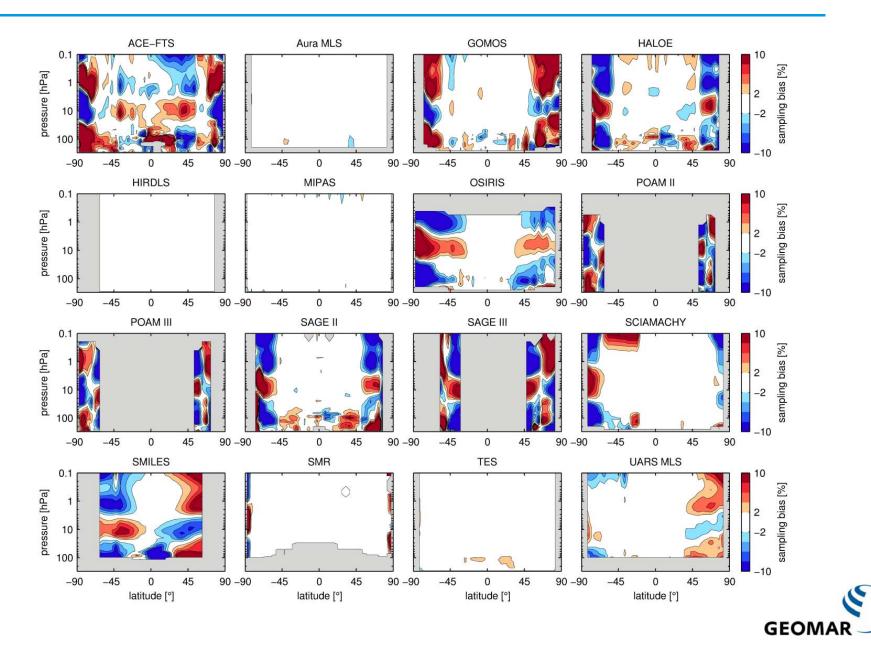




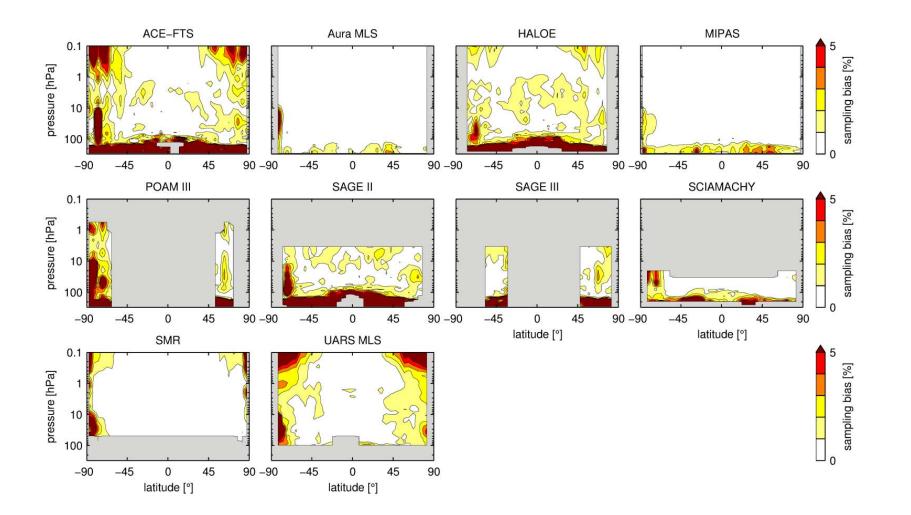
March O₃ Case study: reality check



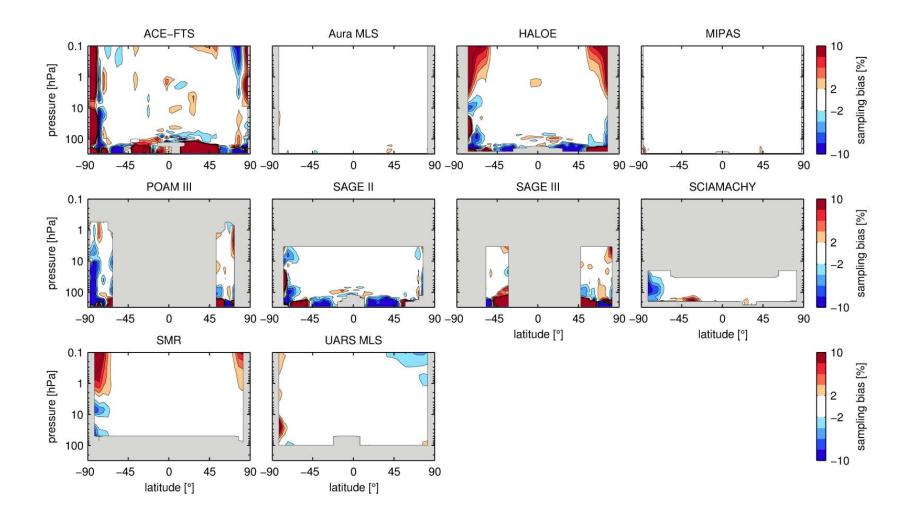
Annual mean O₃ sampling bias



RMS monthly H₂O sampling bias



Annual mean H₂O sampling bias



Part 2: random error of climatologies

• Is the standard SEM estimator,

$$\text{SEM} = \frac{\hat{\sigma}_x}{\sqrt{N}}$$

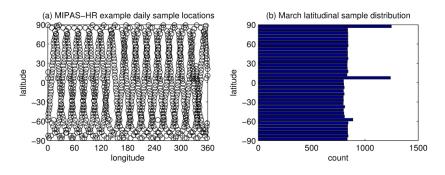
appropriate for zonal mean climatologies from satellite measurements?

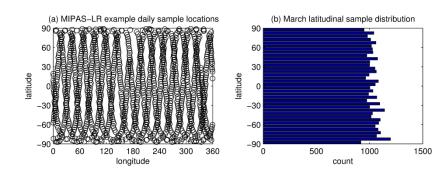
- 1. It assumes uncorrelated measurements!
- 2. It assumes random sampling!

Part 2: random error of climatologies

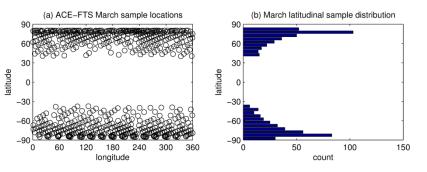
- What is the standard error of the mean?
 - Different samples (of size n) drawn from a population give different values of the sample mean. The standard error of the mean is the standard deviation of those sample means over all possible samples (of size n) drawn from the population.
- Idea: use model O_3 fields (CMAM this time), draw multiple* sample sets, calculate the mean for each set, and then calculate the SD of those sample means.
 - Compare with "classic" estimate σ/sqrt(n)
 - * duplicate sample sets created by shifting longitude and time such that LST of measurements remains constant

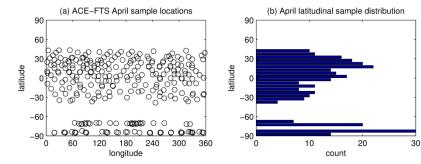
Sampling patterns: MIPAS and ACE-FTS





MIPAS-HR



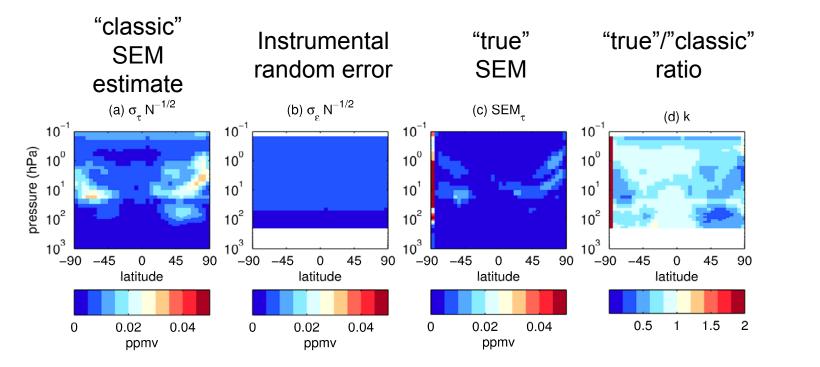


ACE-FTS April

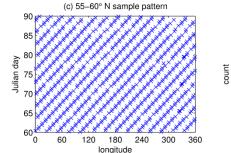
GEOMAR

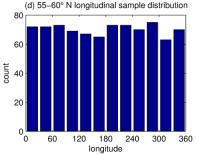
ACE-FTS March

Results: MIPAS-HR

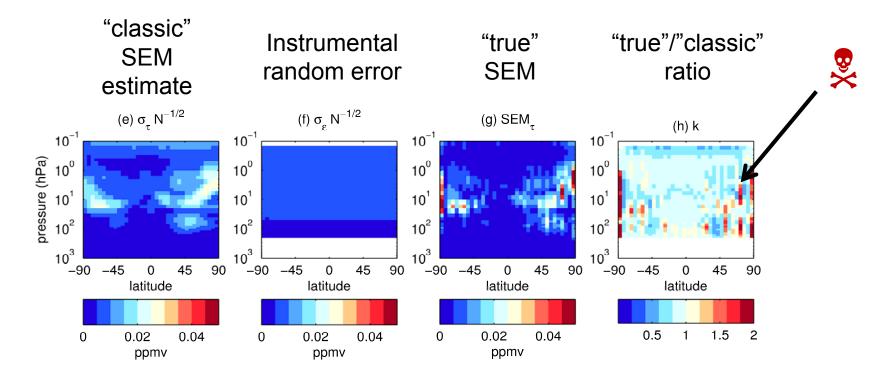


- k<1 → classic SEM estimate overestimates SEM ☺
- Explanation: ultra-uniform MIPAS-HR sampling produces better estimate of σ (and hence SEM) for given *n* than random sampling would.

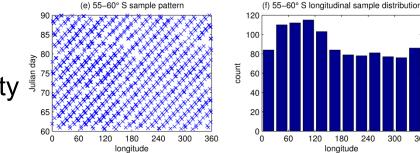




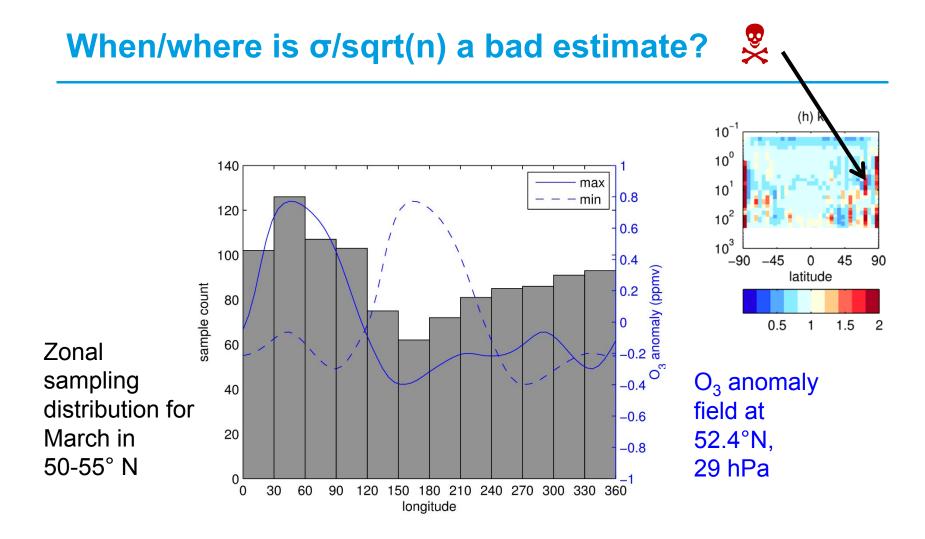
Results: MIPAS-LR



- $k>1 \rightarrow$ classic SEM estimate underestimates SEM 🙎
- Explanation: systematic non-uniformity of MIPAS-LR sampling in certain latitude bins

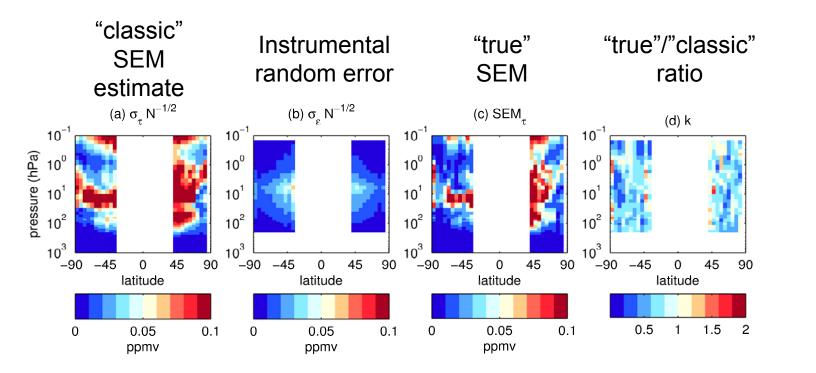


360

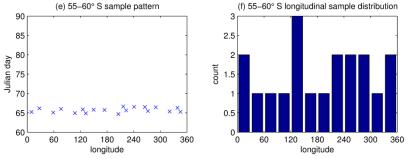


Non-uniformity of zonal sampling leads to random sample error when measured field shows zonal variability of same form as sampling

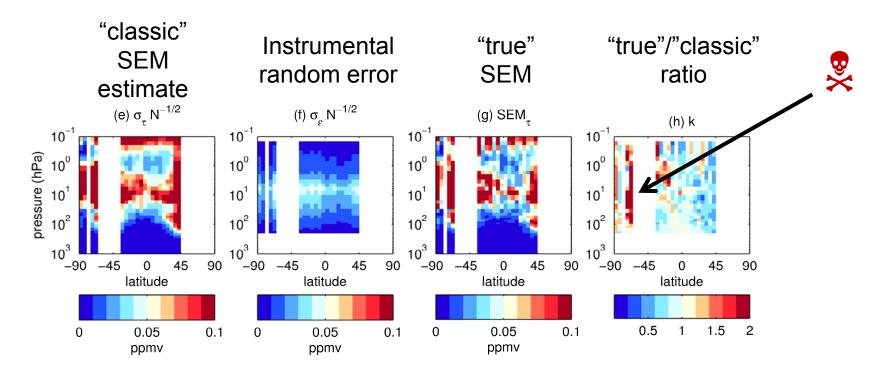
Results: ACE-FTS March



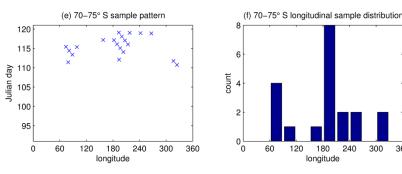
- k<1 → classic SEM estimate overestimates SEM ☺
- Explanation: even with relatively small n, ACE-FTS sampling is often more uniform than random sampling.



Results: ACE-FTS April



- $k>1 \rightarrow$ classic SEM estimate underestimates SEM 🙎
- Explanation: systematic nonuniformity of ACE-FTS sampling in certain latitude bins



For precise zonal means, zonal sampling uniformity is important!

300 360

Caveats

- Results apply only to constructed monthly zonal means, produced by binning measurements!
- Concern horizontal and temporal sampling only, not vertical resolution.
- Results based on single years of model data
 - give a flavour of magnitude and important locations for sampling uncertainties
- Results based on single years of sampling
 - Variations in year-to-year sampling may also be important

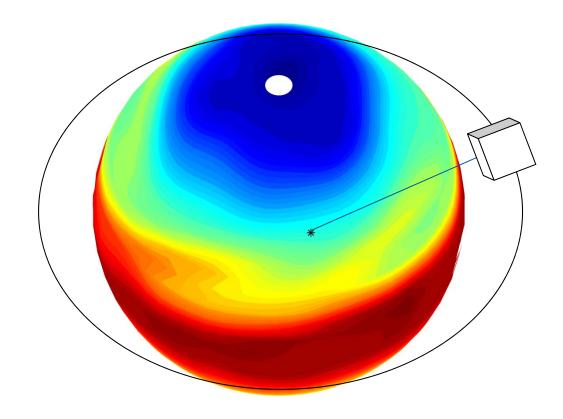
Conclusions

- Sampling bias is an important consideration in the interpretation of zonal monthly mean climatologies
 - Monthly O_3 biases reach >10% in high latitudes for some instruments.
 - Annual mean O_3 sampling bias also often ~10%.
 - Non-uniform temporal sampling is most important mechanism, but nonuniform latitude and longitude sampling (not shown here) also play a role.

\rightarrow Toohey et al., submitted to JGR

- The oft-used SEM estimator σ/sqrt(n) is *generally* a conservative estimate of the random error in zonal monthly means
 - True even for sparse samplers like ACE-FTS
 - Exceptions occur when zonal sampling distribution is non-uniform, and coincidident with similar zonal non-uniformity of the measured field (not limited to sparse samplers!)

 \rightarrow Toohey and von Clarmann, AMT (2013).



FB1 Seminar | 17.12.2012