### AERGOM: IMPROVED AEROSOL EXTINCTION PROFILES FROM GOMOS MEASUREMENTS.

7th Limb Conference, June 17-19, 2013, Bremen, Germany

Filip Vanhellemont, BIRA-IASB

| <b>BIRA-IASB</b> : | Charles Robert, Christine Bingen, Nina Mateshvili, Didier<br>Fussen, Emmanuel Dekemper, Cédric Tétard |
|--------------------|-------------------------------------------------------------------------------------------------------|
| ACRI:              | Laurent Blanot                                                                                        |
| FMI:               | Erkki Kyrölä, Viktoria Sofieva, Johanna Tamminen, Marko<br>Laine                                      |
| LATMOS:            | Francis Dalaudier, Alain Hauchecorne, Jean-Loup Bertaux                                               |
| ESA/ESRIN:         | Claus Zehner                                                                                          |

## AERGOM project

- ESA-financed
- To improve GOMOS aerosol/cloud extinction profiles.
- To verify if it is possible to derive particle size distributions and associated quantities.
- To construct a standalone prototype.
- Processing of the entire GOMOS data set using v6.01 transmittance spectra as input.
- Data validation of AERGOM results
- Follow-up of AERGOM: climatologies + data merging (Aerosol CCI; see talk Christine Bingen on wednesday)

Quick reminder: GOMOS on ENVISAT (see Erkki Kyrölä)

- ENVISAT: 11year mission (March 2002 – April 2012)
- Stellar occultation
- Transmittance measurements (UV/Vis/near IR):

SPA:(248 - 690 nm)SPB1(750 - 776 nm)SPB2:(916 - 956 nm)







- For every spectrum at every tangent altitude separately
- Only SPA data (248 690 nm)
- Choice of aerosol quadratic polynomial (unfortunately):

$$\tau(l) = C_{aer1}(l_{ref}) \left[ 1 + C_{aer2}(l - l_{ref}) + C_{aer3}(l - l_{ref})^2 \right] \text{ with } l_{ref} = 500 \text{ nm}$$

# GOMOS IPFv6.01 retrieval algorithm: spatial inversion



- For all species separately. So, all spectral inversion retrieval covariances between tangent species are discarded...
- Aerosols: only C<sub>aer1</sub> (=AOD @ 500 nm) is inverted and receives Tikhonov regularization. *Result: aerosol extinction spectra "wobble" around this reference wavelength.*

#### GOMOS IPFv6.01 data: aerosol extinction profiles and their problems (1)

From previous studies, we know already that aerosol extinction @ 500 nm is pretty good. Other wavelengths: very doubtable quality ...



50





### PSCs from GOMOS: ext. 500 nm





#### Red: GOMOS (500 nm)

Black: ACE imagers (525 nm)

## AERGOM

| AERGOM prototype in a nutshell |                                                                                                                                                                                     |                                                                                                                                                                                                                                  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                | Official GOMOS processor                                                                                                                                                            | AERGOM                                                                                                                                                                                                                           |  |  |
| Spectral inversion             | <ul> <li>SPA</li> <li>NO<sub>2</sub>, NO<sub>3</sub>: DOAS</li> <li>O<sub>3</sub>, aerosols: LM fit</li> <li>Aerosol spectral model: rather strange quadratic polynomial</li> </ul> | <ul> <li>SPA, SPB1 (outside O2 band)</li> <li>NO<sub>2</sub>, NO<sub>3</sub>, O<sub>3</sub>, aerosols:<br/>simultaneous LM fit</li> <li>Aerosol spectral model:<br/>Lagrange polynomial<br/>parametrized with AOD (3)</li> </ul> |  |  |
| Spatial<br>inversion           | <ul> <li>All species separately, discarding covariances from the spectral inversion</li> <li>Tikhonov altitude regularization (one for aerosols)</li> </ul>                         | <ul> <li>All species together, using the entire spectral retrieval covariance matrix.</li> <li>Tikhonov altitude regularization (n for aerosols (3)).</li> </ul>                                                                 |  |  |
| Radial<br>inversion            | □ None                                                                                                                                                                              | <ul> <li>Particle size distributions on<br/>a logarithmically spaced size<br/>grid.</li> <li>Derived quantities: N<sub>tot</sub>, a<sub>m</sub>,<br/>σ<sup>2</sup>, a<sub>eff</sub>, SAD, VD</li> </ul>                          |  |  |

#### **AERGOM v1.0: data product overview**

| File format       | NetCDF4                                                                   | Standard reading libraries for Matlab, IDL, C,<br>Python etc. are available. Also readable by<br>BEAT (CODA).                                        |
|-------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| File name         | 'aergom_R <orbit>_S<star>_<starttime>.nc<br/>'</starttime></star></orbit> | Example:<br>'aergom_R02911_S0148_20020920_104448.nc'                                                                                                 |
| Typical size      | 150 kByte                                                                 | Total of all products (dark limb): 60 Gbytes                                                                                                         |
| 9 Data<br>Groups: | AEROSOL                                                                   | Slant path AOD, local extinction (+ errors)                                                                                                          |
|                   | GAS                                                                       | Slant path density, local density (+ errors)                                                                                                         |
|                   | AIR                                                                       | Slant path density, local density (+ errors)                                                                                                         |
|                   | ECMWF                                                                     | Pressure, density, temperature                                                                                                                       |
|                   | ATTRIBUTES                                                                | Star characteristics, filenames, version<br>number, regularization params, discarded<br>flags, cirrus selection criteria, illumination<br>condition, |
|                   | GEOLOCATION                                                               | Lat, lon, tangent alt, MJD, SZA                                                                                                                      |
|                   | STATISTICS                                                                | # iterations and $\chi^2$ for spectral and radial inversion                                                                                          |
|                   | RADIAL                                                                    | PSD: a-grid, u-grid, $f_{a'}$ , $f_{u'}$ , b (+ errors)<br>DERIVED: N <sub>tot</sub> , S, V, $a_{eff}$ , $a_{m'}$ , $\sigma^2$ (+ errors)            |
|                   | WEIGHT FRACTION                                                           | $H_2SO_4/HNO_3$ weight fraction                                                                                                                      |

## Batch processing of GOMOS v6.01 spectra

- Total number of files : ~ 800000
- In dark limb: ~400000
- Standard settings that we used:
  - Retrieval altitude range: 0 120 km
  - Aerosol ext. model: quadratic polynomial of  $1/\lambda$
  - All species (except air) are retrieved: O<sub>3</sub>, NO<sub>2</sub>, NO<sub>3</sub>, aerosol extinction.
  - 20 particle size bins in the size range [0.02 2] μm
- Processing time for all *dark limb* occultations: about 2 days on 4 machines (15 simultaneous processes).
- Proportion of retrievals without numerical errors: 98.5 %



#### Initial data filtering

3

3.5

x 10<sup>4</sup>

Cold, weak stars give problems ... Applying a few tresholds removes most outliers:

Star magnitude < 2.6 Star temperature > 5000 K

#### Zoom on low SZA



From visual inspection: cut all data below SZA<100°!

#### GOMOS IPFv6.01 vs. AERGOMv1.0: A random set of 115 profiles



#### GOMOS IPFv6.01 vs. AERGOMv1.0: A random set of 115 spectra



#### GOMOS/SAGEII coincidences (500 km, 12 hours): chronologically ordered.



~1100 values

Blue: GOMOS

1000

1000 1200

1000 1200

1200

Red: SAGE II

### Ensemble comparisons: AERGOM vs. SAGE II, SAGE III

#### ■ 3 data bins for every parameter:

SZA

- star magnitude
- star temperature
- occultation obliquity
- time
- latitude

#### AERGOM vs SAGE2: SZA



Black: SZA = [100 – 117°] Red: SZA = [117 – 148°] Blue: [148 – 172°]

Conclusion: better to cut data below SZA = 117°

Notice altitudinal effect for deviation: SZA is strongly correlated with latitude.

### AERGOM vs SAGE2: star magnitude



Black: mag= [2.6 , 2.2] Red: mag = [2.2, 1.5] Blue: mag = [1.5, -1.44]

Conclusion: weak stars give higher abs. deviation (obvious)

#### AERGOM vs SAGE2: star temperature



Black: T = [5000 , 10700] K Red: T = [10700, 25500] K Blue: T = [25500, 40000] K

Conclusion: no clear effect observed

#### **AERGOM vs SAGE2: obliquity**



Black: obl= [-25°, 20°] Red: obl= [20°, 50°] Blue: obl =[50°, 90°]

Conclusion: no real effect observed.

#### AERGOM vs SAGE2: time



Black: time= [52379 , 52790] Red: time= [52379, 53120] Blue: time =[53120, 53434]

Conclusion: no real effect observed, results remain very stable and consistent.

#### AERGOM vs SAGE2: latitude



Black: lat= [90°S , 30°S] Red: lat= [30°S, 30°N] Blue: lat =[30°N, 90°N]

Conclusion: sensitivity clearly follows the latitude/altitude dependence of the aerosol layer.



## AERGOM vs SAGE2: all profiles

With SZA > 117°, star temp >5000 K, star magnitude<2.6

Results:

Rel. diff of 15 % or better:

- 386 nm: 20 30 km
- 452 nm: 17 35 km
- 525 nm: 10 35 km

Abs deviation of 40 % or better:

- 386 nm: 19 29 km
- 452 nm: 17 31 km
- 525 nm: 15 32 km

#### AERGOM vs SAGE3: latitude



Black: lat= [62°S , 55°S] Red: lat= [55°S, 45°S] Blue: lat =[45°S, 35°S]

Conclusion: sensitivity clearly follows the latitude/altitude dependence of the aerosol layer.



## AERGOM vs SAGE3: all profiles

With SZA > 117°, star temp >5000 K, star magnitude<2.6

Results:

Rel. diff of 15 % or better:

- 384 nm: 19 32 km
- 520 nm: 17 32 km
- 755 nm: 10 17 km

Abs deviation of 40 % or better:

- 384 nm: 17 29 km
- 452 nm: 14 26 km
- 525 nm: 15 22 km

## AERGOM: particle size information



Comparison studies ongoing

#### **AERGOM: conclusions**

- Significant improvement of aerosol extinction profiles. Oscillations, spikes, ... have decreased strongly. Especially extinction at wavelengths different from 500 nm are much better.
- Still problems for certain cases:
  - Cold, weak stars
  - stray light contamination at low SZA (<117°).</p>
- Comparisons with SAGE II and SAGE III: Typical: relative diff = 15 % or less, deviation = 40% or less.
- Particle size distributions and derived quantities are also available.