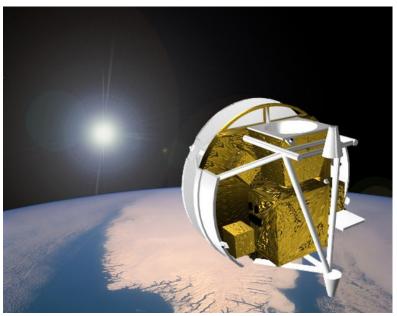


# The Atmospheric Chemistry Experiment (ACE) Satellite Mission: Overview, Mission Status and Results

Kaley A. Walker<sup>1,2</sup>, Chris Boone<sup>2</sup>, Peter Bernath<sup>3,4</sup>, and C. Thomas McElroy<sup>5</sup>

<sup>1</sup>Physics, University of Toronto; <sup>2</sup>Chemistry, University of Waterloo;
 <sup>3</sup>Chemistry and Biochemistry, Old Dominion University;
 <sup>4</sup>Chemistry, University of York (UK);
 <sup>5</sup>Earth and Space Science and Engineering, York University


7th Limb Conference - Bremen, Germany - 17 June 2013



# **ACE on SCISAT-1**

#### **Atmospheric Chemistry Experiment (ACE) Satellite Mission:**

Mission to measure atmospheric composition: profiles of trace gas species, cloud and aerosol extinction and temperature/pressure



Launch date: 12 August 2003 Orbit: 74° inclination at 650 km Measurement mode: solar occultation

#### **ACE-FTS:**

- FTIR spectrometer, 2-13 microns at 0.02 cm<sup>-1</sup> resolution
- 2-channel visible/NIR imager, 0.525 and 1.02 microns

#### **MAESTRO:**

 dual UV / visible / NIR grating spectrophotometer, 285 to 1030 nm at ~1-2 nm resolution

**Pointing:** suntracker in ACE-FTS

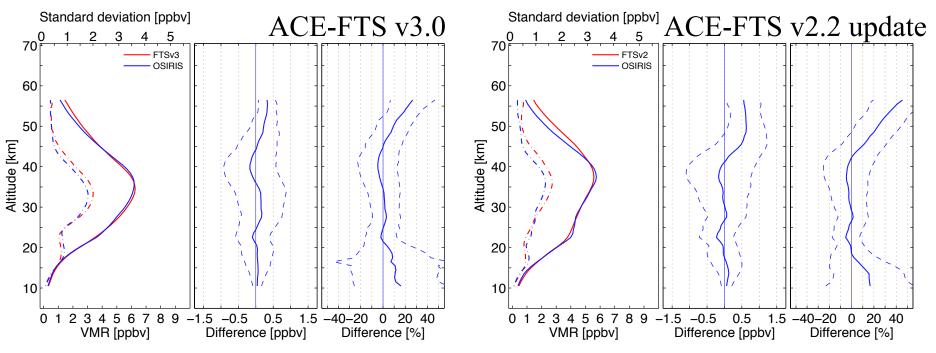


### **ACE Mission Status**

- Now finishing 10th year in orbit designed for 2 year lifetime

   Starting to see some degradation in ACE-FTS performance
   and MAESTRO continues to "age gracefully"
- Since launch, satellite and instrument operations nominal
  - Routine operations began on 21 February 2004
  - On 12 June 2013, SCISAT completed its 52,950th orbit!
  - ~50% of occultations occur in polar regions (> 60 degrees)
- Operation of ACE mission approved until end of March 2014
   CSA will be conducting reviews in coming months

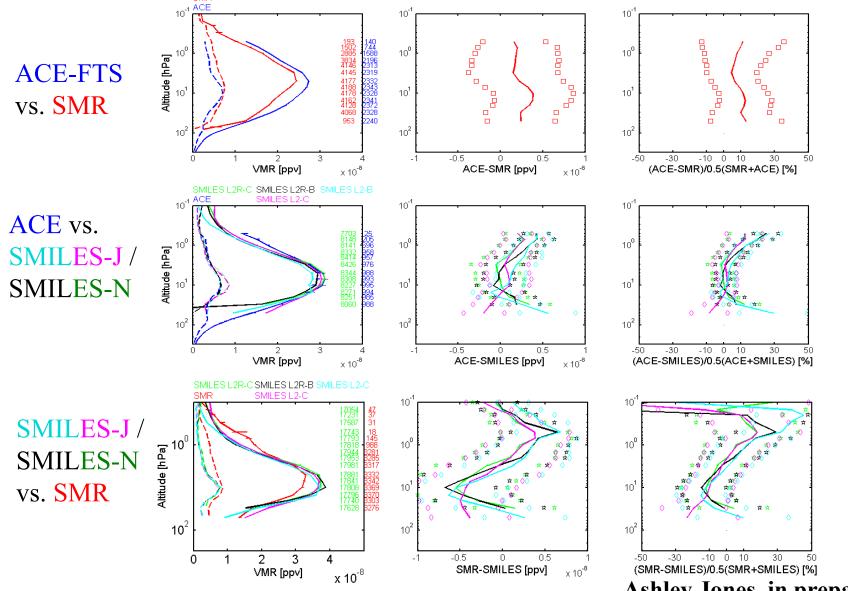



### **ACE Data Products**

- ACE-FTS profiles (current version 3.0/3.5; previous v2.2+updates/2.5):
  - Tracers:  $H_2O$ ,  $O_3$ ,  $N_2O$ , NO,  $NO_2$ ,  $HNO_3$ ,  $N_2O_5$ ,  $H_2O_2$ ,  $HO_2NO_2$ ,  $N_2$
  - Halogen-containing gases: HCl, HF, ClONO<sub>2</sub>, CFC-11, CFC-12, CFC-113, COF<sub>2</sub>, COCl<sub>2</sub>, COFCl, CF<sub>4</sub>, SF<sub>6</sub>, CH<sub>3</sub>Cl, CCl<sub>4</sub>, HCFC-22, HCFC-141b, HCFC-142b
  - Carbon-containing gases: CO, CH<sub>4</sub>, CH<sub>3</sub>OH, H<sub>2</sub>CO, HCOOH, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, OCS, HCN and pressure / temperature from CO<sub>2</sub> lines
  - Isotopologues: Minor species of H<sub>2</sub>O, CO<sub>2</sub>, O<sub>3</sub>, N<sub>2</sub>O CO, CH<sub>4</sub>, OCS
  - Research species: ClO, acetone, PAN (peroxyacetyl nitrate), etc.
- MAESTRO profiles (current version 3.12b; validated version 1.2):
  - O<sub>3</sub>, NO<sub>2</sub>, optical depth and aerosol (water vapor being developed)
- IMAGERS profiles (current version 3.0; validated version 2.2):
  - Atmospheric extinction at 0.5 and 1.02 microns (aerosols in v3.0)



# ACE-FTS versus OSIRIS O<sub>3</sub>


- Continuing inter-comparisons to assess v3.0/v3.5 and examine changes over lifetime of instrument
- Example shown for ACE-FTS v3/v2, OSIRIS v5.07 ozone profiles
- Used all coincident pairs within 1000 km and 6 hours; note different subsets of files used for each ACE version



**Claire Waymark** 

Ozone Isotopologue Comparisons – <sup>16</sup>O<sup>16</sup>O<sup>18</sup>O (Asym-18)

• Using all pairs within 800 km and 12 hours & consistent sPV



Ashley Jones, in preparation

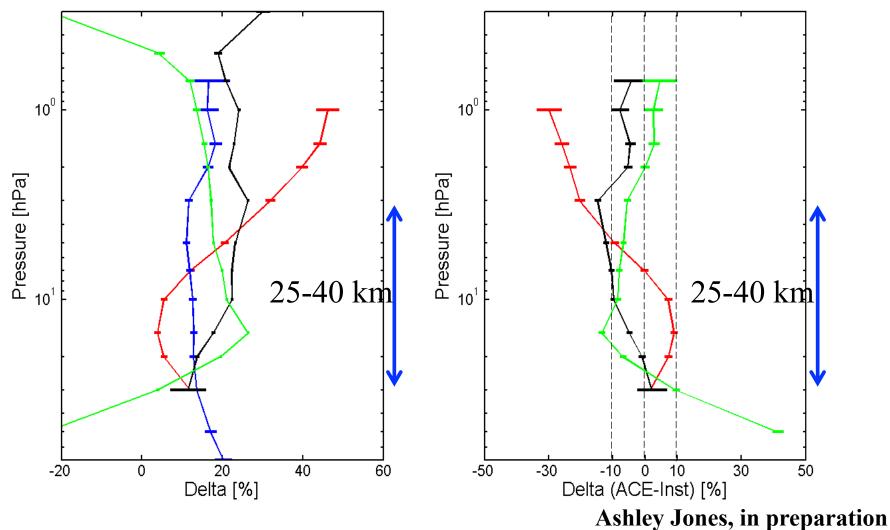


# **Isotopic Fractionation**

- The ratios of isotopologues can be changed through atmospheric processes
  - This leads to an enrichment or depletion of the isotopologue, Q
- We define this as:

 $\delta^{\mathcal{Q}}O_{3}(\%) = \left(\frac{R_{s}}{R_{o}} - 1\right) \times 100$ 

Oxygen Ratio in SMOW (Standard Mean Ocean Water) isotopic ratio:


$$^{16}\text{O}:^{17}\text{O}:^{18}\text{O} = 1:1/2700:1/500$$

- Where, R<sub>s</sub> is the ratio of the isotopologue to a reference (e.g. [<sup>asym-18</sup>O<sub>3</sub>]/[<sup>normal</sup>O<sub>3</sub>])
- Where, R<sub>0</sub> is reference value, for example, SMOW oxygen (e.g.[<sup>18</sup>O]<sub>SMOW</sub>/[<sup>16</sup>O]<sub>SMOW</sub>)



#### Asym-18<sup>18</sup>O<sub>3</sub> Enrichment (30-50N)

ACE-FTS SMR SMILES L2N-B SMILES L2J-B

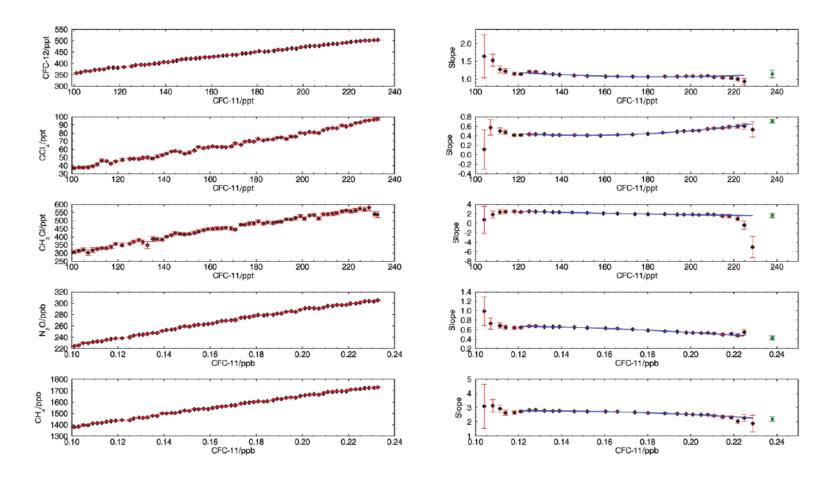




#### **Comparison of Enrichment Values**

| Platform                         | Altitude<br>Range (km) | Latitude<br>Coverage | $\delta(^{18}\text{O})$ for<br>Asym-18 O <sub>3</sub> |
|----------------------------------|------------------------|----------------------|-------------------------------------------------------|
| FIRS-2 (Johnson et al., 2000)    | 25-35                  | 30-25N, 68N          | $12.2 \pm 1.0$                                        |
| ATMOS (Irion et al., 1996)       | 25-40                  | 80S - 80N            | $15.0 \pm 6.0$                                        |
| Ground FTIR (Meier et al., 1996) | Total column           | 79N                  | $13.5 \pm 4.0$                                        |
| ACE-FTS                          | 25-40                  | 30-50N               | $12.3 \pm 0.2/0.9$                                    |
| SMILES L2N band B                | 25-40                  | 30-50N               | $20.9 \pm 0.1/5.8$                                    |
| SMILES L2J band B                | 25-40                  | 30-50N               | $29.3 \pm 0.1/7.6$                                    |
| SMR                              | 25-40                  | 30-50N               | $11.7 \pm 0.2/6.4$                                    |

•  $\delta(^{18}\text{O})$  for Asym-18 O<sub>3</sub> shown with  $\pm 1$  sigma precision / 1 std (%)


Ashley Jones, in preparation



### **SPARC** Lifetime Assessment

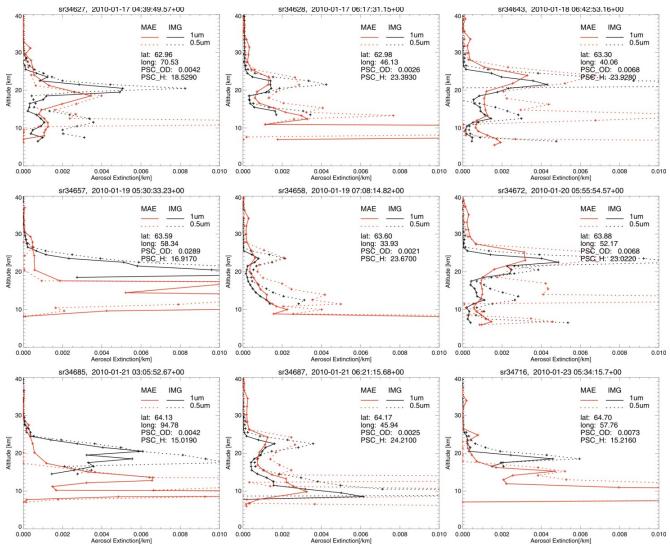
- SPARC (Stratospheric Processes And their Role in Climate) group is sponsoring a report entitled "Reevaluation of the Lifetimes of Dominant Stratospheric Ozone Depleting Substances (ODSs)".
- This is important: "Because the lifetimes of ODSs are used to predict their future evolution, to perform top down emission estimates, and to calculate the ozone-depletion potentials (ODPs) of those species, it is of critical importance to have the best possible estimates of ODS lifetimes."
- ACE data is contributing to Chapter 4 on "Inferred lifetimes from observed trace gas distributions" – Utilizing tracer-tracer correlations with CFC-11, following the method of Volk et al., 1997.

A. T. Brown et al., ACPD, 13, 4221 (2013)



**Fig. 1.** Correlations between the volume mixing ratios of CFC-12, CCl<sub>4</sub>, CH<sub>4</sub>, CH<sub>3</sub>Cl and N<sub>2</sub>O and CFC-11 for the data from the Northern Hemisphere during the stratospheric winter of 2008. Left panels: the mean correlation curves. Each point represents the mean of the VMR, of both CFC-11 and CFC-12, in a window of 2 ppt of CFC-11. The error on these points is the standard deviation of the data within each 2 ppt window. Right panels: The local slope of data in an 80 ppt of CFC-11 window. The error on the points is the fitting error of this fit. The blue line is a second degree polynomial fit to the local slopes. The green point is the extrapolated slope at the tropopause. **A. T. Brown** *et al.*, **ACPD**, **13**, **4221** (2013)




# **Stratospheric Lifetime Assessment**

- Using slope of correlation with CFC-11 at the tropopause, lifetimes were calculated for CFC-12, CCl<sub>4</sub>, CH<sub>3</sub>Cl, N<sub>2</sub>O, CH<sub>4</sub>
  - Corrections were made to the correlations for changing atmospheric concentrations of these species
  - Used stratospheric lifetime of 45 years for CFC-11
- No significant hemispheric or seasonal dependency was found
- Weighted mean lifetime values were determined to be:
  - CFC-12: 113+(-)26(18) years (within errors of WMO value)
  - $CCl_4$ : 35+(-)11(7) years (within errors of WMO value)
  - $CH_4$ : 195+(-)75(42) years (larger than Volk et al., 1997)
  - $CH_3Cl$ : 69+(-)65(23) years (first value determined)
  - $N_2O$ : 123+(-)53(28) years (within errors of WMO value)

A. T. Brown et al., ACPD, 13, 4221 (2013)



### **MAESTRO/ACE-Imagers Aerosols**



- From January 2010 sunrises, MAESTRO aerosols at 525 and 1025 nm taken from 10 wavelength bands
- MAESTRO
- IMAGER ---- 525 nm
  - **—**1025 nm
- MAESTRO PSC Height and Optical Depth are calculated

**Tom McElroy** 



# SCISAT/ACE 10<sup>th</sup> Anniversary

The fall ACE Science Team meeting will be held as a celebration of 10 years of SCISAT measurements

- 22 October 2003 marks the date of first spectral measurements from ACE-FTS and ACE-MAESTRO during commissioning
- Dates: Wed. 23 October Fri. 25 October 2013
- Location: York University, Toronto, Canada



# Summary

- ACE Instruments and satellite are continuing to function nominally and produce excellent results
- Data being used for scientific and validation studies
  - Reprints available from <a href="http://www.ace.uwaterloo.ca">http://www.ace.uwaterloo.ca</a>
  - Climatological datasets and atlases available from website
  - Validation results published in *Atmos. Chem. Phys.*: <u>http://www.atmos-chem-phys.net/special\_issue114.html</u>

#### Funding for ACE and this work provided by:

- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada
- Environment Canada
- Canadian Foundation for Climate and Atmospheric Sciences
- Natural Environment Research Council (NERC)