
Chapter 4

Geometric transformations

• geometric transformations deal with “moving pixels around” →Fig. 4.1

Fig. 4.1: Some examples for geometric transformations: Rotations, mirroring, distortion, map
projection.

– shift

– rotation

– scaling

– other distortions

• Note: pixels of a digital image must be in a regular (Cartesian, equidistant) grid – i.e., pixel
coordinates must be integer
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• BUT: transformation might cause pixels to end up in a different grid – non-integer pixel
coordinates →Fig. 4.2

Fig. 4.2: Pixels of rotated image (red) are between the positions of the original pixels (blue) – in
other words, they have non-integer pixel coordinates.

⇒ interpolation needed to get new pixels in a new regular grid with integer coordinates

⇒ Geometric transformation of digital images = two separate operations:

1. spatial transformation: rotation, shift, scaling etc.

2. grey-level interpolation:

f (x,y) : input image (original image)
g(x,y) : output image (resulting image after transformation)
x,y: integers (pixel coordinates)

g(x,y) = f (x′,y′) = f (a(x,y),b(x,y)) (4.1)

i.e., x′ = a(x,y) (4.2)

y′ = b(x,y) (4.3)

4.1 Grey level interpolation

“Grey level” = pixel value
There are two ways to solve the interpolation problem:

1. forward-mapping approach (pixel carry-over):
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• if a pixel from input image f maps to non-integer coordinates (between four integer
pixel positions):

divide its grey-level among these four pixels →Fig. 4.3

Fig. 4.3: Pixel carry-over (from Castleman, 1996, Fig. 8.1)

• Problem: Some areas in output image might not be reached

2. backward-mapping approach (pixel filling):

• “allowed” output pixel positions in g are mapped back to original image f , one by one

• if a pixel position falls between four input pixels in f , the pixel value is interpolated
→Fig. 4.4

Fig. 4.4: Pixel filling (from Castleman, 1996, Fig. 8.1)

• pixel filling is the preferred method

• various schemes for the 2-dimensional interpolation:

– nearest neighbor

– bilinear

– others. . .

Nearest neighbor interpolation

• the grey level of the nearest pixel is taken

• no computations necessary (fast!)
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Fig. 4.5: Bilinear interpolation (from Castleman, 1996, Fig. 8.2)

Bilinear interpolation

→Fig. 4.5

• square with corners at (0,0), (1,0), (0,1), and (1,1)

• values at the corners known, f (0,0), f (1,0), f (0,1), f (1,1)

• wanted: value f (x,y) at a given position (x,y) inside the square, i.e. x and y fixed and
0≤ x,y≤ 1

• first: linear interpolation first along two sides of the square

f (x,0) = f (0,0)+ x[ f (1,0)− f (0,0)] (4.4)

f (x,1) = f (0,1)+ x[ f (1,1)− f (0,1)] (4.5)

• then: linear interpolation between f (x,0) and f (x,1) to get to the point (x,y) inside the
square:

f (x,y) = f (x,0)+ y[ f (x,1)− f (x,0)] (4.6)

• Substitute Eq. s 4.4 and 4.5 into Eq. (4.6):

f (x,y) = [ f (1,0)− f (0,0)]x

+[ f (0,1− f (0,0)]y

+[ f (1,1)+ f (0,0)− f (0,1)− f (1,0)]xy

+ f (0,0) (4.7)

Note: this is the equation for a hyperbolic paraboloid ( f (x,y) = ax+by+ cxy+d)
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Higher-order interpolation

Necessary, when bilinear interpolation causes too much smoothing

• cubic splines

• sinc function

(uses more than the surrounding 4 pixels)

4.2 Spatial Transformation

• Remember: g(x,y) = f (x′,y′) = f (a(x,y),b(x,y))

• output image value at position (x,y) = input image value at position (x′,y′)

4.2.1 Linear transformation, RST (rotation, scaling, translation)

• a(x,y) and b(x,y) are linear in x and y

• Formulation with “homogeneous coordinates”:a(x,y)
b(x,y)

1

=

a2 a1 a0
b2 b1 b0
0 0 1

x
y
1

 (4.8)

Identity

x′ = a(x,y) = x , y′ = b(x,y) = y

i.e. a(x,y)
b(x,y)

1

=

1 0 0
0 1 0
0 0 1

x
y
1

 (4.9)

Shift

x′ = a(x,y) = x+ x0 , y′ = b(x,y) = y+ y0

i.e. a(x,y)
b(x,y)

1

=

1 0 x0
0 1 y0
0 0 1

x
y
1

 (4.10)

Scaling (expanding or shrinking)a(x,y)
b(x,y)

1

=

1/c 0 0
0 1/d 0
0 0 1

x
y
1

 (4.11)

• Image scaled in x-direction by factor c

• Image scaled in y-direction by factor d
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Rotation

Rotation about origin (0,0) by angle α:a(x,y)
b(x,y)

1

=

cosα −sinα 0
sinα cosα 0

0 0 1

x
y
1

 (4.12)

Combinations

• Compound transformations: matrix multiplication, sequence: right to left (for backward-
mapping approach)

• e.g., rotation about (x0,y0): shift – rotate – shift backa(x,y)
b(x,y)

1

=

1 0 x0
0 1 y0
0 0 1

cosα −sinα 0
sinα cosα 0

0 0 1

1 0 −x0
0 1 −y0
0 0 1

x
y
1

 (4.13)

4.2.2 General Transformations, Control points

• till now: Rotation, scaling, translation (shift) (=RST), linear transformations: a(x,y) and
b(x,y) are linear in x and y.

• more general transformations: polynomial transformations: a(x,y) and b(x,y) are polynomi-
als of higher order than 1

• Often exact transformation is derived from control points

• control point = a point in the input image and its corresponding point in output image
→Fig. 4.6

Fig. 4.6: Control points (from Castleman, 1996, Fig. 8.5)

• Two different setups for determining a general transformation from control points:

1. Control grid interpolation: there is a regular array (grid) of control points

2. Polynomial warping: control points are distributed irregularly
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Control grid interpolation

• Control grid, e.g. from a test target

• distorted quadrilaterals map to regular rectangles →Fig. 4.7

Fig. 4.7: Quadrilaterals map to rectangles

• Corners of quadrilaterals map to corners of rectangles

• Mapping of points inside quadrilaterals determined from interpolation, using the 4 corners
(usually, bilinear interpolation), see Castleman (1996, chap. 8.3.5)

• Example application: Rectifying (or geometrically calibrating) an image taken with a fish-
eye lens: →Fig. 4.8

Polynomial warping

• assume a(x,y) and b(x,y) as polynomials of order N with unknown coefficients:

x′ = a(x,y) =
N

∑
i=0

N−i

∑
j=0

ai jxiy j (4.14)

y′ = b(x,y) =
N

∑
i=0

N−i

∑
j=0

bi jxiy j

(4.15)

• Determining the coefficients requires at least as many control points as the polynomials have
coefficients

• linear transformations mentioned above (RST) are contained in this general form for N = 1

• N = 2 sufficient for satellite image of few hundred kilometers size and small terrain relief:

x′ = a(x,y) = a00 +a10x+a01y+a11xy+a20x2 +a02y2 (4.16)

y′ = b(x,y) = b00 +b10x+b01y+b11xy+b20x2 +b02y2

(4.17)

The meaning of some of the coefficients →Fig. 4.9
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Fig. 4.8: Geometric rectification of an image taken with a fish-eye lens: (a) test target, (b) fish-eye
image of test target, (c) fish-eye image (d) rectified image (Fig 8.9 from Castleman, 1996)

a00, b00: Shift vector

a10, b01: Linear scaling in x, y direction

a01, b10: Shear in x, y direction1

a11, b11: y-dependent scale in x, x-dependent scale in y

a20, b02: non-linear (quadratic) scale in x, y

• control points are often not exact⇒no solution!?

⇒ use (many) more control points than needed to solve the equations, then do least square fit,
i.e. find those coefficients that match best

• the control points should be distributed over the whole image

1A rotation can be described as a combination of shear and linear scaling first in one, then the other coordinate: Any
Rotation by angle θ 6=±90◦ can be decomposed in the following way:[

a10 a01
b10 b01

]
=

[
cosθ sinθ

−sinθ cosθ

]
=

[
1/cosθ sinθ/cosθ

0 1

][
1 0

−sinθ cosθ

]
(4.18)

The first (the rightmost one) is a 1D scale and shear in y, the second (the left one) is a 1D scale and shear in x.
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Fig. 4.9: Some polynomial geometric warps (Fig 7-30 in Schowengerdt, 1997)

4.2.3 Applications

Geometric calibration/Image Rectification: remove camera-induced distortion (Fig. 4.8), i.e.,
convert non-rectangular pixel coordinates to rectangular coordinates

Image registration: Geometrically match two images or an image and a map; stationary objects
should have same position in both images (or in image and map) →Fig. 4.10

Map projections
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Fig. 4.10: Image registration. (a) Map; (b) Landsat MSS image to be registered; (c) Landsat image
registered to map using 2nd order polynomials (Fig. 2.16 from Richards, 1986)
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