Chapter 4

Geometric transformations

Fig. 4.1: Some examples for geometric transformations: Rotations, mirroring, distortion, map projection.

- shift
- rotation
- scaling
- other distortions
- Note: pixels of a digital image must be in a regular (Cartesian, equidistant) grid i.e., pixel coordinates must be integer

• BUT: transformation might cause pixels to end up in a different grid – non-integer pixel coordinates →Fig. 4.2

Fig. 4.2: Pixels of rotated image (red) are between the positions of the original pixels (blue) – in other words, they have non-integer pixel coordinates.

- \Rightarrow interpolation needed to get new pixels in a new regular grid with integer coordinates
- \Rightarrow Geometric transformation of digital images = two separate operations:
 - 1. spatial transformation: rotation, shift, scaling etc.
 - 2. grey-level interpolation:

f(x,y): input image (original image) g(x,y): output image (resulting image after transformation) x,y: integers (pixel coordinates)

$$g(x,y) = f(x',y') = f(a(x,y),b(x,y))$$
(4.1)

i.e.,
$$x' = a(x, y)$$
 (4.2)

$$y' = b(x, y) \tag{4.3}$$

4.1 Grey level interpolation

"Grey level" = pixel value

There are two ways to solve the interpolation problem:

1. forward-mapping approach (pixel carry-over):

• if a pixel from input image f maps to non-integer coordinates (between four integer pixel positions):

divide its grey-level among these four pixels \rightarrow Fig. 4.3

Fig. 4.3: Pixel carry-over (from Castleman, 1996, Fig. 8.1)

- Problem: Some areas in output image might not be reached
- 2. backward-mapping approach (pixel filling):
 - "allowed" output pixel positions in g are mapped back to original image f, one by one
 - if a pixel position falls between four input pixels in f, the pixel value is interpolated \bigcirc Fig. 4.4

Fig. 4.4: Pixel filling (from Castleman, 1996, Fig. 8.1)

- pixel filling is the preferred method
- various schemes for the 2-dimensional interpolation:
 - nearest neighbor
 - bilinear
 - others...

Nearest neighbor interpolation

- the grey level of the nearest pixel is taken
- no computations necessary (fast!)

Fig. 4.5: Bilinear interpolation (from Castleman, 1996, Fig. 8.2)

Bilinear interpolation

 \rightarrow Fig. 4.5

- square with corners at (0,0), (1,0), (0,1), and (1,1)
- values at the corners known, f(0,0), f(1,0), f(0,1), f(1,1)
- wanted: value f(x,y) at a given position (x,y) inside the square, i.e. x and y fixed and $0 \le x, y \le 1$
- first: linear interpolation first along two sides of the square

$$f(x,0) = f(0,0) + x[f(1,0) - f(0,0)]$$
(4.4)

$$f(x,1) = f(0,1) + x[f(1,1) - f(0,1)]$$
(4.5)

• then: linear interpolation between f(x,0) and f(x,1) to get to the point (x,y) inside the square:

$$f(x,y) = f(x,0) + y[f(x,1) - f(x,0)]$$
(4.6)

• Substitute Eq. s 4.4 and 4.5 into Eq. (4.6):

$$f(x,y) = [f(1,0) - f(0,0)]x + [f(0,1-f(0,0)]y + [f(1,1) + f(0,0) - f(0,1) - f(1,0)]xy + f(0,0)$$
(4.7)

Note: this is the equation for a hyperbolic paraboloid (f(x,y) = ax + by + cxy + d)

Higher-order interpolation

Necessary, when bilinear interpolation causes too much smoothing

- cubic splines
- sinc function

(uses more than the surrounding 4 pixels)

4.2 Spatial Transformation

- Remember: g(x, y) = f(x', y') = f(a(x, y), b(x, y))
- output image value at position (x, y) = input image value at position (x', y')

4.2.1 Linear transformation, RST (rotation, scaling, translation)

- a(x, y) and b(x, y) are linear in x and y
- Formulation with "homogeneous coordinates":

$$\begin{bmatrix} a(x,y)\\b(x,y)\\1 \end{bmatrix} = \begin{bmatrix} a_2 & a_1 & a_0\\b_2 & b_1 & b_0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$
(4.8)

Identity

$$x' = a(x, y) = x$$
, $y' = b(x, y) = y$

i.e.

$$\begin{bmatrix} a(x,y) \\ b(x,y) \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(4.9)

Shift

$$x' = a(x, y) = x + x_0$$
, $y' = b(x, y) = y + y_0$

i.e.

$$\begin{bmatrix} a(x,y) \\ b(x,y) \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(4.10)

Scaling (expanding or shrinking)

$$\begin{bmatrix} a(x,y) \\ b(x,y) \\ 1 \end{bmatrix} = \begin{bmatrix} 1/c & 0 & 0 \\ 0 & 1/d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(4.11)

- Image scaled in *x*-direction by factor *c*
- Image scaled in *y*-direction by factor *d*

Rotation

Rotation about origin (0,0) by angle α :

$$\begin{bmatrix} a(x,y)\\b(x,y)\\1 \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$
(4.12)

Combinations

- Compound transformations: matrix multiplication, sequence: right to left (for backwardmapping approach)
- e.g., rotation about (x_0, y_0) : shift rotate shift back

$$\begin{bmatrix} a(x,y)\\ b(x,y)\\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_0\\ 0 & 1 & y_0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_0\\ 0 & 1 & -y_0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}$$
(4.13)

4.2.2 General Transformations, Control points

- till now: Rotation, scaling, translation (shift) (=RST), linear transformations: a(x,y) and b(x,y) are linear in x and y.
- more general transformations: polynomial transformations: a(x, y) and b(x, y) are polynomials of higher order than 1
- Often exact transformation is derived from control points

Fig. 4.6: Control points (from Castleman, 1996, Fig. 8.5)

- Two different setups for determining a general transformation from control points:
 - 1. Control grid interpolation: there is a regular array (grid) of control points
 - 2. Polynomial warping: control points are distributed irregularly

Control grid interpolation

- Control grid, e.g. from a test target
- distorted quadrilaterals map to regular rectangles \rightarrow Fig. 4.7

Fig. 4.7: Quadrilaterals map to rectangles

- Corners of quadrilaterals map to corners of rectangles
- Mapping of points inside quadrilaterals determined from interpolation, using the 4 corners (usually, bilinear interpolation), see Castleman (1996, chap. 8.3.5)
- Example application: Rectifying (or geometrically calibrating) an image taken with a fisheye lens: \rightarrow Fig. 4.8

Polynomial warping

• assume a(x,y) and b(x,y) as polynomials of order N with unknown coefficients:

$$\begin{aligned} x' &= a(x,y) = \sum_{i=0}^{N} \sum_{j=0}^{N-i} a_{ij} x^{i} y^{j} \\ y' &= b(x,y) = \sum_{i=0}^{N} \sum_{j=0}^{N-i} b_{ij} x^{i} y^{j} \end{aligned}$$
(4.14)
(4.15)

- Determining the coefficients requires at least as many control points as the polynomials have coefficients
- linear transformations mentioned above (RST) are contained in this general form for N = 1
- N = 2 sufficient for satellite image of few hundred kilometers size and small terrain relief:

$$\begin{aligned} x' &= a(x,y) = a_{00} + a_{10}x + a_{01}y + a_{11}xy + a_{20}x^2 + a_{02}y^2 \\ y' &= b(x,y) = b_{00} + b_{10}x + b_{01}y + b_{11}xy + b_{20}x^2 + b_{02}y^2 \end{aligned}$$
(4.16)

The meaning of some of the coefficients \rightarrow Fig. 4.9

(4.17)

Fig. 4.8: Geometric rectification of an image taken with a fish-eye lens: (a) test target, (b) fish-eye image of test target, (c) fish-eye image (d) rectified image (Fig 8.9 from Castleman, 1996)

- a_{00}, b_{00} : Shift vector
- a_{10}, b_{01} : Linear scaling in x, y direction
- a_{01}, b_{10} : Shear in x, y direction¹
- a_{11}, b_{11} : y-dependent scale in x, x-dependent scale in y
- a_{20}, b_{02} : non-linear (quadratic) scale in x, y
- control points are often not exact \Rightarrow no solution!?
- ⇒ use (many) more control points than needed to solve the equations, then do least square fit, i.e. find those coefficients that match best
 - the control points should be distributed over the whole image

¹A rotation can be described as a combination of shear and linear scaling first in one, then the other coordinate: Any Rotation by angle $\theta \neq \pm 90^{\circ}$ can be decomposed in the following way:

$[a_{10}]$	a_{01}] _ [cos	$\theta \sin \theta$	$\left[1/\cos\theta\right]$	$\sin\theta/\cos\theta$	1	0]	(4.19)
b_{10}	$b_{01} = \lfloor -\sin \theta \rfloor$	$\left[n \theta \cos \theta \right]^{=}$	0	1][-	$-\sin\theta$	$\cos\theta$	(4.18)

The first (the rightmost one) is a 1D scale and shear in y, the second (the left one) is a 1D scale and shear in x.

rotation

quadratic

Fig. 4.9: Some polynomial geometric warps (Fig 7-30 in Schowengerdt, 1997)

4.2.3 Applications

- **Geometric calibration/Image Rectification:** remove camera-induced distortion (Fig. 4.8), i.e., convert non-rectangular pixel coordinates to rectangular coordinates
- **Image registration:** Geometrically match two images or an image and a map; stationary objects should have same position in both images (or in image and map) \supset Fig. 4.10

Map projections

Fig. 4.10: Image registration. (a) Map; (b) Landsat MSS image to be registered; (c) Landsat image registered to map using 2nd order polynomials (Fig. 2.16 from Richards, 1986)

Bibliography

K. R. Castleman. Digital Image Processing. Prentice Hall, Englewood Cliffs, 1996.

J. A. Richards. Remote Sensing Digital Image Analysis. Springer, 1986. ISBN 0-387-16007-8.

R. A. Schowengerdt. *Remote Sensing, Models and Methods for Image Processing*. Academic Press, 1997.