Digital Image Processing, 2017

Exercise 7

C. Melsheimer, G. Spreen

June 1, 2017 submit by Wed, 7 June, 12:00

Problem 22: Products of vectors

By \boldsymbol{x} we understand a column vector, $\boldsymbol{x}^{\mathrm{T}}$ is a row vector. If $\boldsymbol{x}^{\mathrm{T}} = (1, 2, 3)$, what is $\boldsymbol{x} \boldsymbol{x}^{\mathrm{T}}$, what is $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$?

Problem 23: Covariance Matrix

Determine the covariance matrix C_x for the following set of points in three dimensions: $\boldsymbol{x_a} = (0, 0, 0)^{\mathrm{T}}, \, \boldsymbol{x_b} = (1, 0, 0)^{\mathrm{T}}, \, \boldsymbol{x_c} = (1, 1, 0)^{\mathrm{T}}, \, \boldsymbol{x_d} = (1, 0, 1)^{\mathrm{T}}.$ $\boldsymbol{x_e} = (2, 2, 0)^{\mathrm{T}}. \, \boldsymbol{x_f} = (3, 2.5, 0)^{\mathrm{T}}.$ Note that the covariance matrix is a 3×3 matrix.

What do the elements of C_x tell us?

Problem 24: Principal Component Analysis

Show that ...

- a) ... for the mean values of the vectors \boldsymbol{y} after the principal components transformation we have: $\boldsymbol{m}_y = 0$.
- b) ... the inverse of the transformation matrix is $W^{-1} = W^{T}$. Hint: Do this by showing that WW^{T} is the identity matrix. Remember that the rows of W (and thus the columns of W^{T}) consist of orthonormal vectors.