SCIAMACHY QWG FP: Baseline Summary

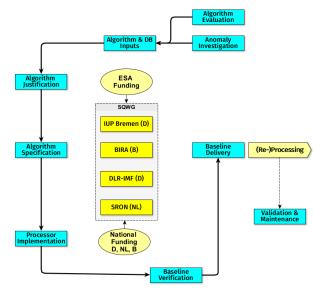
G. Lichtenberg & QWG

6.12.2019

Outline

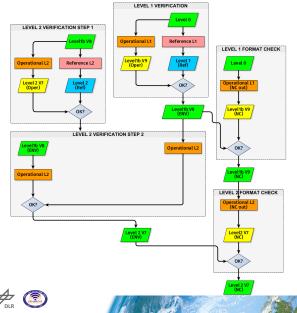
- 1. Introduction
- 2. History
- 3. Why still work with SCIA data
- 4. Level 1 Recommendations
- 5. Level 2 Recommendations

dlr.de - Slide 2 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019


Intro - Purpose of BL Summary

- Explain the history of SCIAMACHY data products and processing
- \neg Describe the current status of the latest product version
- Propose future improvements that can be implemented and that would further enhance the product quality.
- The report comes with a comprehensive list of references that enables the reader to dig into the details

dlr.de - Slide 3 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019


Intro - QWG Set-up

dlr.de - Slide 4 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019

Intro - Testing Set-up

< ロ > < />

History - Level 1

- → 9 versions between 1998 and 2018
- → 3 major phases:
 - → 1998 2005: IDL prototype and the use of IECF
 - → 2005 2012: IDL prototype and SciCal
 - 2012 2018: Switch to C++, no split between prototype and operational code
- \neg The baseline report shows an overview over all calibration algorithms

dlr.de - Slide 6 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019

History - Level 2

- → At the beginning of the project two Level 2 processors were developed in parallel:
 - \neg an OL processor implemented by DLR-IMF with more complex algorithms
 - → a NRT processor implemented by industry for Nadir products that aimed to distribute products within 3 hours after sensing.
- → In 2004 both development lines were combined and the OL processor was chosen also for NRT processing
- \neg In total the QWG delivered 5 processor baselines to ESA
- The baseline report shows an overview over all Level 2 products with references

dlr.de - Slide 7 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019 Why still work with SCIA data

- 1. It is the only instrument (past, present or planned) that spans the wavelength range from 214 – 2385 nm with a moderately high spectral resolution.
- 2. It is the only instrument that provides limb measurements for its extended wavelength range
- 3. It is the only instrument that observed the moon regularly for 10 years at a moderately high spectral resolution
- 4. It was the first instrument that provided measurements of the greenhouse gases CH_4 and CO_2 as well as CO.
- 5. The data are an essential part of long time series needed to assess climate change and Ozone hole trends (see also the climate change initiative (CCI) of ESA, where SCIAMACHY data are used).

dlr.de - Slide 8 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019

L1 Recommendations (I) - Summary

Recommendation	Description	Status
Error Estimates	Improve Uncertainties for Level 1 ⇒ FDR4ATMOS	Needs a combination of studies, partially available
Non-Linearity Channel 1-5	Expand existing study for non-linearity in UVN channels and if confirmed implement operational algorithm	Algorithm needs to be refined and tested
Dark correction	Review existing dark correction and derive improved error estimates andorbit phase de- pendencies	Algorithm and implementation straight forward
DBPM channels 6 & 7	Extend the existing method of deriving indi- vidual pixel thresholds for the DBPM to chan- nels 6 and 7	Algorithm probably needs significant ad- justment
Light Leak Channel 7	Correct the stray light caused by a light leak and make channel 7 usable for retrievals	No algorithm yet, needs to be found in study
Sun Glint Polarisation	Verify polarisation correction for SCIA- MACHY using sun glint observations	No algorithm yet, needs to be found in study
Spectral Calibration SWIR	Use in-flight data to update the spectral cali- bration in SWIR channels	Algorithm available, need to find proper parameters and solution for DBPM influ- ence, operational interface ready

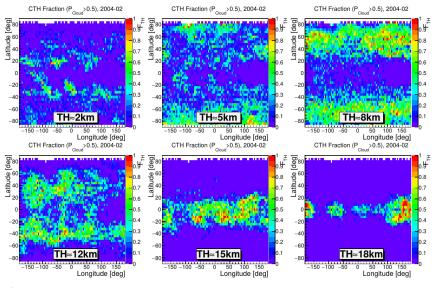
dlr.de - Slide 9 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019

L1 Recommendations (II) - Summary

Recommendation	Description	Status
Absolute Radiometric Cali- bration	Reconcile on-ground measurements and im- prove the absolute radiometric calibration	First Algorithm ideas available, need to be detailed
Calibrated Lunar Observa- tions	Calibrate moon observation and provide spectrally resolved moon spectra for other applications	First Algorithm ideas available, need to be detailed
Degradation Correction	Re-analysis of degradation correction to solve jumps from on-ground toin-flight, model the recovery in later years and improve NIR and solarirradiance correction.	First Algorithm ideas available, need to be detailed
Improved BRDF ESM	Remove ESM diffuser speckles	First Algorithm ideasavailable, need to be detailed
Absolute Calibration Dif- fuser ASM	Provide absolute calibration for ASM diffuser	First Algorithm ideasavailable, need to be detailed

dlr.de - Slide 10 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019

L1 Recommendations (III) - Spectral calibration


dlr.de - Slide 11 of 12 > SCIAMACHY QWG FP: Baseline Summary > G. Lichtenberg & QWG > 6.12.2019

L2 Recommendations (I) - Summary

Recommendation	Description	Status
Error Estimates	Review of the uncertainties of (all) products	Needs major work
SWIR retrieval improve-	Update to latest BIRRA prototype and inves-	Prototype processor available for CH4,
ments	tigation for anoperational CO2 product	CO. Adjustment needed for CO2
Long Term CO2 Series	Generate a CO2 data set for SCIAMACHY as a start for a long termdata set using one al- gorithm for past, current and future missions	Algorithm available, application to new data products and quality assessment to be done before operational implementa- tion.
Limb Clouds	Implement new algorithm for Limb cloud de- tection	Algorithm description (ATBD) available
Limb retrieval kernel im-	Update to the latest improvement in radia-	Prototype processor available, implemen-
provements	tive transfer andabandoning approximation since computational speed is no longera ma- jor concern	tation in operational needs adjustments
Limb Aerosol Size Distribu- tion	Retrieve aerosol size distribution from Limb measurements	Algorithm available, application to new data products and quality assessment to be done before operational implementa- tion
Limb Water Vapour	Adjustment of exiting algorithm to increase computational speedviable for full mission operational retrieval	Prototype processor available, implemen- tation in operational needs adjustments
Tropospheric ozone	Apply existing limb-nadir matching algorithm to updated data	Algorithm available, application to new data products and quality assessment to be done before operational implementa- tion

L2 Recommendations (II) - Example Limb Clouds

