Limb cloud flagging Sciamachy ClOud Detection Algorithm (SCODA)

F. Azam, P. Liebing, K. U. Eichmann, S. Noel, K. Bramstedt, H. Bovensmann and J. P. Burrows

SQWG3 PM3 05/06-05-2015

Contents:

- Summary of Approach
- Status/Input for processing

Limb Cloud Flagging

Color index (CI) approach:

Difference in relative contributions of scattering by air molecules (*Rayleigh scattering*) and the cloud particles (*Mie sattering*) at two different wavelengths

Considerations:

- Radiation < 400 nm not used (atmosphere optically thick for scattering in the upper troposphere)</p>
- > Windows with strong molecular absorptions not used
- Radiation ~ NIR used to distinguish the thermodynamic phase (spectral dependence of absorption differ appreciably between ice and water ~1670 nm)

SCODA Algorithm:

1-Color index profile (CI):

Ratios of spectrally integrated intensities in a defined wavelength band

$$R_{c}(TH) = \frac{I(\lambda_{1}, TH)}{I(\lambda_{2}, TH)}$$

Sensivity to cloud determination

2- Color index ratio (CIR):

Starting from the lowest TH, pairs of two adjecent color indices divided, maximum shows the cloud top height (CTH)

$$\Theta(\mathit{TH}) = \frac{R_c(\mathit{TH})}{R_c(\mathit{TH} + \mathit{\Delta} \mathit{TH})} \qquad \text{ $\Delta TH= 3.3$ km}$$

SCODA is part of operational retrieval chain since SCIAMACHY data Lv2 V5.04 (support to operational limb trace gas retrieval)

SCODA Clouds Types:

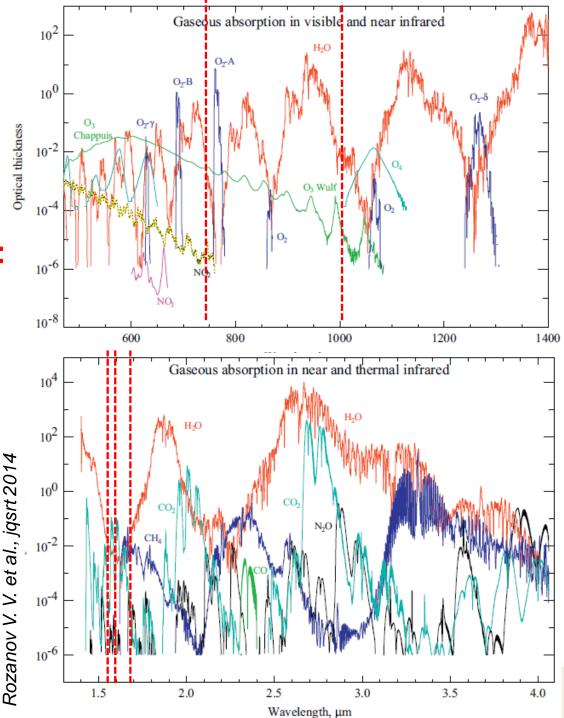
- Tropospheric (Water & Ice)
- Polar stratospheric (PSCs)
- > Noctilucent (NLCs, North)

Wavelength (bands) ratio:

Noctilucent clouds: 265nm & 291nm

Cloud detection (water): 750nm & 1090nm

 Phase determintion (ice):


 1550nm & 1685nm (IUP)

 1550nm & 1630nm (Operational)

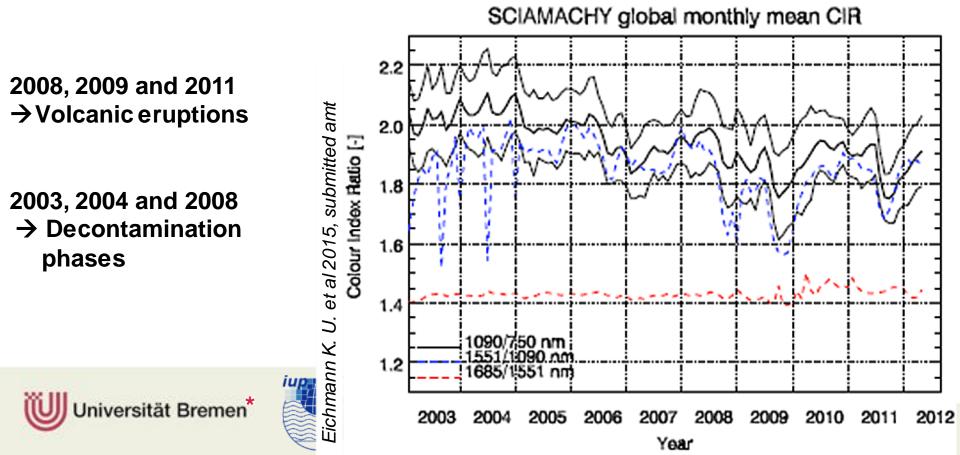
In addition limb water vapour retrieval at IUP uses 1550/1090 nm for cloud detection.

SCODA flags (Operational processor):

Cloud type	CIR	Threshold	Flag	Description
Normal (water)	1090nm/750nm	CIR<1.4	0	No clouds
		1.4 <cir<2< td=""><td>1</td><td>Partial</td></cir<2<>	1	Partial
		CIR>2	2	Full
		CIR>>	3	Bad data or >> Max. TH
PSCs	1090nm/750nm	ClR<1.3, lat.> 50°, 15 <th<30< td=""><td>0</td><td>No PSCs</td></th<30<>	0	No PSCs
		ClR>1.3, lat.> 50°, 15 <th<30< td=""><td>1</td><td>PSCs</td></th<30<>	1	PSCs
**lce	1630nm/1550nm	CIR?	0	Water cloud
		CIR>??	1	Ice cloud
		TH >> or ??	2	Bad data (>> Max.TH)

SCIAMACHY

** Thresholds not specified in SGP OL1b-2 ATBD Version 6



Limb Cloud flagging optimization:

Improvement in detection sensivity:

Optimize phase detection, issues as S/N decreasing with altitude, bad pixels in channel 6+

Distinguish aerosols from clouds: CIR 1090/750 misidentifies high aerosol layers as clouds, CIR ~1670/1550 almost not effected

Clouds discrimination Study

CI instead of CIR:

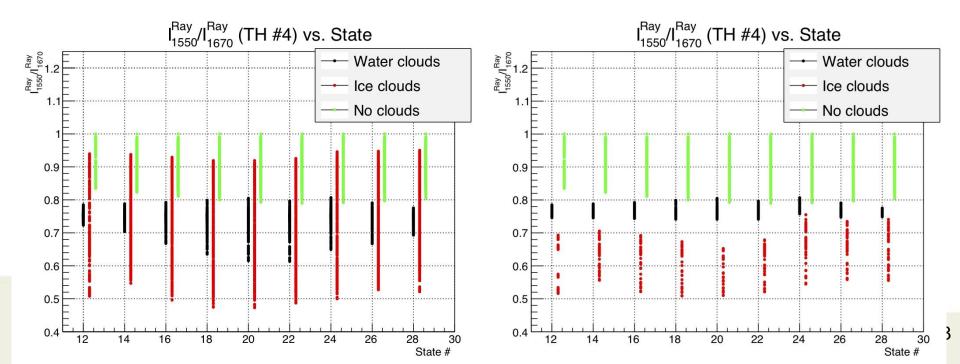
Ratio of reflectance 1550/1670 (here normalized by Rayleigh reflectance, albedo=0), ratios improve on S/N

Note: 1670 +- 20 nm window is used, bad and RTS pixels flagged in real data

At a given TH if ratio < 0.7, cloud present at this TH or above. All THs between ground and 20 km scanned</p>

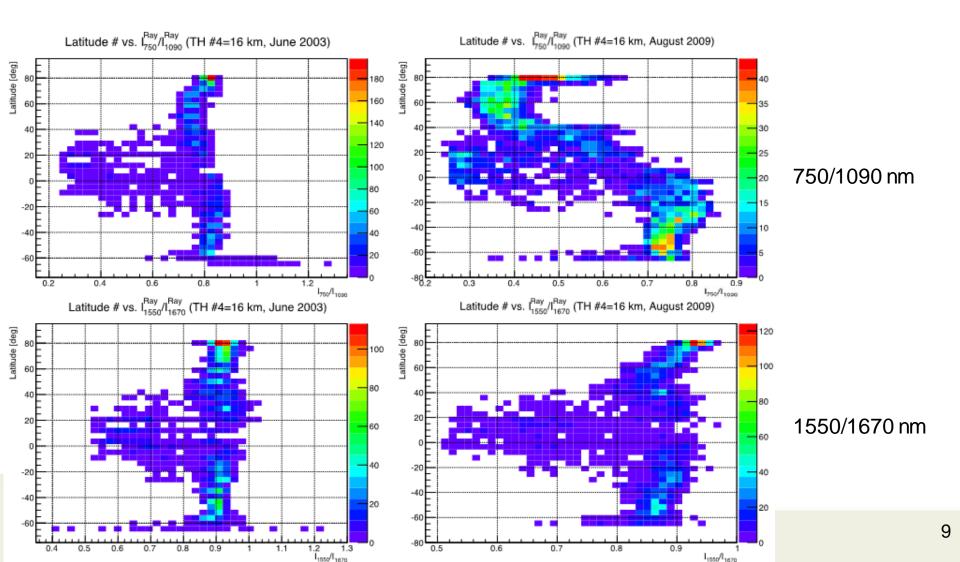
Flag:

- $_{\odot}~$ All events with cloud detected between 0-20 km
- Consecutively ignore lowest THs until 15 km, get all event with clouds between TH_i-20 km
- V7 used with calibration setting of V8, bad pixel mask from L1b is implemented



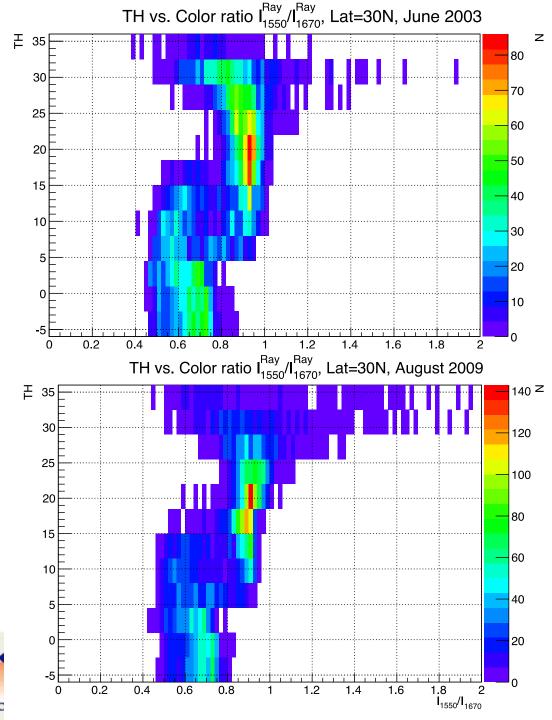
SCIATRAN Simulations (1550/1670, Rayleigh normalized)

- > 1 set with varying albedo/boundary layer/trop./stratospheric aerosol
- 1 set with clouds at different altitudes in addition Water clouds: 5-7, 9-11, 11-13, 13-15 km, OD=0.5-50 Ice clouds: 13-15, 15-17, 17-19, OD=0.001-0.5


Each with 2 different size parameters

Discrimination is difficult unless similar background conditions and/or known OD

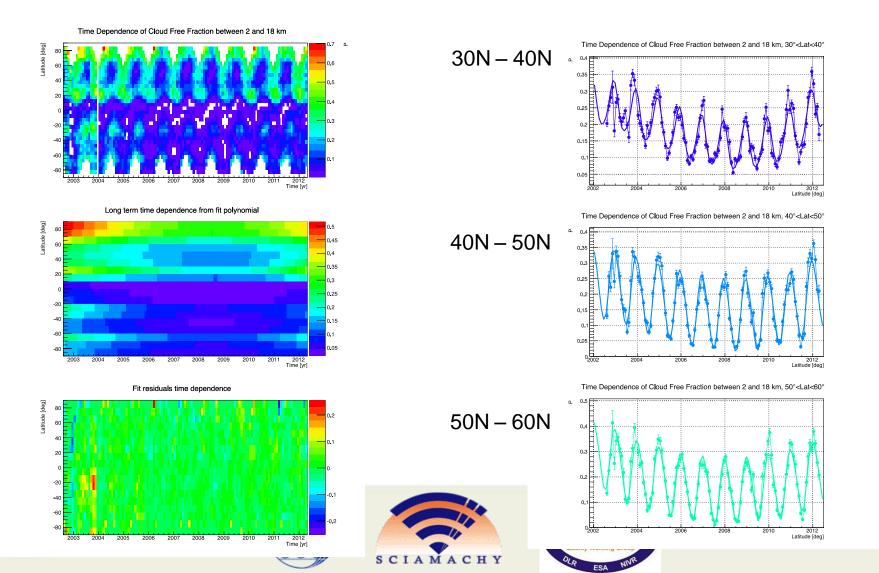
SCIAMACHY Limb data (ratio vs. lat.)

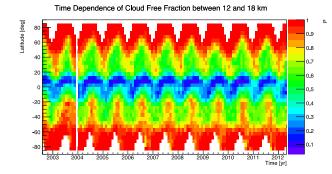

Rayleigh normalized ratio 750/1090 misidentifies high aerosol load as clouds, chages distribution (Sarychev eruption June, 2009), 1550/1670 uneffected

SCIAMACHY Limb data (ratio 1550/1670 vs. TH)

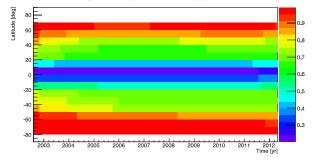
No qualitative difference between the two years, although aerosol load is much higher in 2009.

Differences from 30 km up.

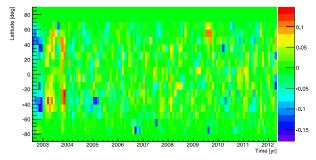


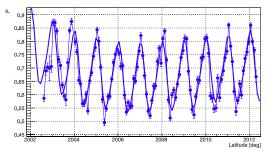


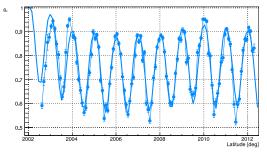
In addition

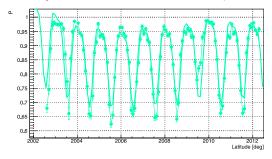

Cloud frequencies in Limb (monthly zonal means):

Fraction of cloud free profiles is strongly time/lat dependent



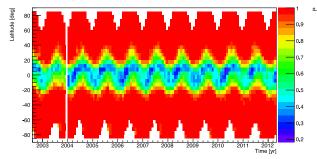

Long term time dependence from fit polynomial

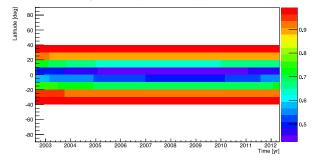

Fit residuals time dependence

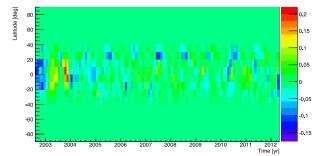

Time Dependence of Cloud Free Fraction between 12 and 18 km, 30°<Lat<40°

Time Dependence of Cloud Free Fraction between 12 and 18 km, 40°<Lat<50°

Time Dependence of Cloud Free Fraction between 12 and 18 km, 50°<Lat<60°

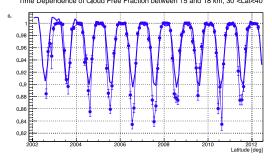




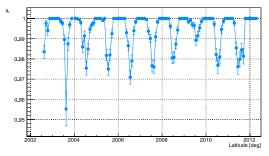

Time Dependence of Cloud Free Fraction between 15 and 18 km

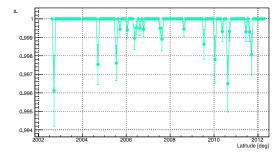
Long term time dependence from fit polynomial

Fit residuals time dependence



Universität Bremen*




Time Dependence of Cloud Free Fraction between 15 and 18 km, 30°<Lat<40°

Time Dependence of Cloud Free Fraction between 15 and 18 km, 40°<Lat<50°

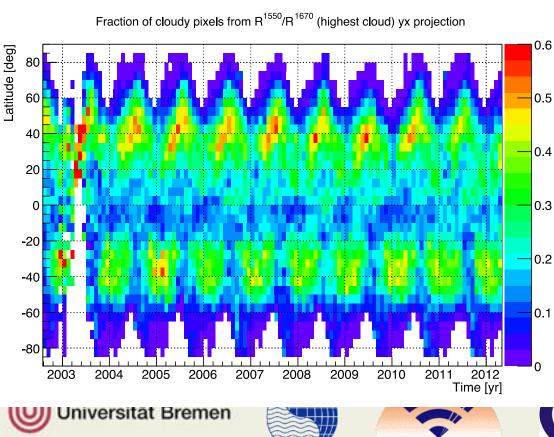
Time Dependence of Cloud Free Fraction between 15 and 18 km, 50°<Lat<60°

Several issues when analyzing time series:

Degradation/background: wrong degradation or offset correction could shift the distribution (changing purity and efficiency of samples)

Tangent height sampling

- > **Noise** (gets worse if dark currents increase)
- Though 1550/1670 ratio is less sensitive to aerosols than the 750/1090, there is some sensitivity



Effect of different flagging:

only flag the highest TH where the cloud is detected, R<0.75, cloudy fraction

SCIAMACHY

Still strong time dependence

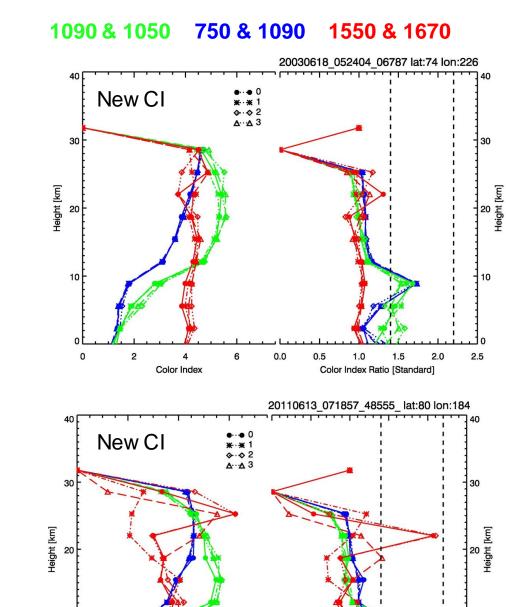
TH 11-12 km

Possible hick ups: decontaminations 2002-2004

TH sampling variations in 2002/2003

Orbit change (TH scanning regime)

Volcanic eruptions


 Latitude dependence may be improved by polarization
 calibration application for

calibration application for certain limitations

Investigations ongoing:

- Sensivity of Ratios (profiles)
- Threshold optimization
- Ratios with out Rayleigh normalization
- To try the ratio 1050 & 1250 (equidistant from water vapour absorption band)

6

0.0

0.5

1.0

Color Index Ratio [Standard]

1.5

10

2.5

2.0

10

0

2

Color Index

Conclusions:

- 750/1090 nm ratio is not able to distinguish clouds and high aerosol load but 1550/1670 nm ratio can
- Without independent retrieval of OD it may be extremely difficult to distinguish water and ice clouds while still separating clouds/aerosols (needs more effort and time)
- Additional pitfall:

TH sampling – it is possible to miss geometrically small and/or optically thin clouds

- Time series analysis show strongly time/lat dependence, may be improved to some extent by switching on polarization calibration (*applicable*)
- Switching to CI instead of CIR in the cloud flagging algorithm is straight (thresholds need to be optimized).

