
A Guide to Unix Shell Quoting

Contents
• 1 Why is quoting necessary? The levels of interpretation
• 2 Terminal interface quoting
• 3 Shell quoting
• 3.1 Bourne shell
• 3.1.1 Which quoting method protects which characters?
• 3.1.2 Input interpretation: an overview
• 3.1.3 Common misconceptions
• 3.1.4 Blank interpretation revisited
• 3.1.5 Disabling filename generation
• 3.1.6 Assignments, case commands, indirection
• 3.1.7 The list of positional parameters: $* and $@
• 3.1.8 ${VAR+...}
• 3.1.9 Here documents
• 3.1.10 Details of command substitution
• 3.1.11 The golden rules of Bourne shell quoting
• 3.2 Other shells
• 3.2.1 bash, ksh
• 4 Application quoting
• 4.1 Options
• 4.2 test , expr
• 4.3 set

1 Why is quoting necessary? The levels of interpretation
For most non-trivial programs, certain characters or strings have a special meaning. For example,
the Ctrl-C character has a special meaning for the terminal interface: it causes an interrupt, rather
than inserting a literal Ctrl-C character. The »|« sign has a special meaning for the Bourne shell: it
serves to connect two processes by a pipeline. The »-« sign as the first character of an argument has
a special meaning for an application program like »mv«: it tells »mv« that this argument should be
interpreted as an option, rather than a file name. Quoting becomes necessary, whenever we want to
remove this special meaning from a character, that is, when we want it to be interpreted like any
other character.

For example imagine that we have accidentally created a file whose name consists of a hyphen, a
vertical bar, and a Ctrl-C. When we want to rename this file, we have to keep in mind that our input
is interpreted first by the terminal interface, then by the shell, and finally by »mv«, and the each of
them may misinterpret our input. To see how our input must be protected, or quoted, we proceed in
reverse order:

One way to prevent »mv« from misinterpreting »-« as an option is to precede »-« with »./«. So
»mv« should be invoked as

 mv ./-|^C foo

(where ^C denotes a Ctrl-C character). If we want the shell to invoke »mv« in this way, we have to
ensure that it does not misinterpret the vertical bar. This can be done, for instance, by preceding it

with a backslash. So the input of the shell should look like

 mv ./-\|^C foo

Finally, to prevent the terminal interface from misinterpreting the Ctrl-C character, we have to
precede it with a Ctrl-V. In other words, typing

 m v Space . / - \ | Ctrl-V Ctrl-C Space f o o Return

does the job.

Note that the quoting rules of the terminal interface, the shell, and »mv« are completely different. A
backslash would not prevent »mv« from interpreting the hyphen as an option character; typing Ctrl-
V in front of the vertical bar would not prevent the shell from interpreting »|« as a pipeline
character; and so on.

2 Terminal interface quoting
Terminal interface quoting is easier and more uniform than shell quoting or application quoting. The
terminal input system has a function called LNEXT that causes the special meaning of the next
character to be ignored. Usually, the LNEXT function is bound to Ctrl-V (but this can be configured
differently), so the character sequence Ctrl-V Ctrl-C can be used to input a literal Ctrl-C without
generating a SIGINT signal, and the character sequence Ctrl-V Ctrl-? can be used to input a literal
Ctrl-? (Delete) character without deleting the preceding character. On some fairly old Unix systems,
there is no LNEXT function. In this case, it is still possible to quote some control characters (usually
Ctrl-D, Ctrl-U, Ctrl-?) by prefixing them with a backslash, but this technique is not universally
applicable.

Shells that do their own command line editing rather than relying on the capabilities of the terminal
driver (such as bash, ksh, or tcsh) usually mimic the LNEXT function of the terminal driver. Thus
Ctrl-V still works as a quoting character.

3 Shell quoting

3.1 Bourne shell

3.1.1 Which quoting method protects which characters?

Bourne shell uses three characters for quoting: single quotes ('), double quotes ("), and backslashes
(\). (The backquote (`) is used for command substitution rather than for quoting, the acute accent
(´) has no special function in the shell syntax.)

What is the difference between single and double quotes? And why is there more than one quoting
method? The simple answer is

• A backslash (\) protects the next character, except if it is a newline. If a backslash precedes
a newline, it prevents the newline from being interpreted as a command separator, but the
backslash-newline pair disappears completely.

• Single quotes ('...') protect everything (even backslashes, newlines, etc.) except single
quotes, until the next single quote.

• Double quotes ("...") protect everything except double quotes, backslashes, dollar signs,
and backquotes, until the next double quote. A backslash can be used to protect ", \, $, or `
within double quotes. A backslash-newline pair disappears completely; a backslash that does

not precede ", \, $, `, or newline is taken literally.

Note that it is perfectly legal to quote the third character with double quotes, the fifth to seventh
with single quotes, and the rest not at all, so that

 12'4"$\89

is turned into

 12"'"4'"$\'89
 _/ ___/

But this is only half of the story. To understand the other half, one has to understand how the shell
interprets its input.

3.1.2 Input interpretation: an overview

Before the shell executes a command, it performs the following operations (in this order!):

1. Syntax analysis (Parsing):

remove comments, split input into words, detect quoting, detect variables, detect keywords,
analyze control structures, ...

concerns: #, Space, Tab, Newline, ', ", \, `, $VAR, =, ;, &, |, >, >>, (, {, for, while,
do, if, ...

2. Parameter (variable) and command substitution

$HOME -> /usr/home/walter
`date` -> Thu Jun 18 12:40:45 MET DST 1998

concerns: $VAR, `...`

3. Blank interpretation (Word Splitting)

if previous substitutions have introduced further whitespace characters, split into words.

concerns: Space, Tab, Newline (cf. Sect. 3.1.4)

4. Filename generation (Globbing)

*.c -> input.c main.c output.c

concerns: *, ?, [...]

5. Quote Removal

remove all quoting characters detected at parsing time.

concerns: ', ", \

Check the manual for the details.

If a string/character is quoted by single quotes or by a backslash, then none of these operations

occurs (except for quote removal, of course). If a string is quoted by double quotes, then parameter
and command substitution still occur, but syntax analysis, blank interpretation and filename
generation are prohibited.

As a consequence, there is a difference between $XYZ and "$XYZ", (or between `date` and
"`date`"), though in both cases, the parameter is replaced by its value: If the value of $XYZ
contains globbing or whitespace characters, they are left unchanged in "$XYZ". In $XYZ, however,
globbing characters are expanded and whitespace is interpreted as a separator.

Example:

Suppose that the current directory contains the files foo.1, foo.2, and bar (and
nothing else). Then in

 $ XYZ='abc f*'
 $ grep $XYZ bar

the parameter $XYZ is first replaced by »abc f*«, then the space inside the value of
$XYZ is interpreted as a separator, and finally the »f*« expands to »foo.1«
»foo.2«. So this is equivalent to

 $ grep abc foo.1 foo.2 bar

(i.e., grep for »abc« in the files »foo.1«, »foo.2«, and »bar«).

Now let's put the parameter into double quotes:

 $ XYZ='abc f*'
 $ grep "$XYZ" bar

The parameter substitution occurs even within double quotes, but the space and the *
inside the value of $XYZ are now protected by the quotes, so no further interpretation
takes place here. This is therefore equivalent to

 $ grep 'abc f*' bar

(i.e., grep for »abc f*« in the file »bar«). Note that this is what a programmer
usually intends.

3.1.3 Common misconceptions

It is important to realize that parsing takes place before parameter and command substitution. The
result of parameter or command substitution is therefore subject to blank interpretation and
filename generation (unless protected by double quotes), but it is not re-parsed.

Example:

Suppose that the current directory contains the files foo.1, foo.2, and bar (and
nothing else). Then in the command sequence

 $ XYZ='f* ; cat bar'
 $ echo $XYZ
 foo.1 foo.2 ; cat bar

parameter substitution produces

 echo f* ; cat bar

and filename generation yields

 echo foo.1 foo.2 ; cat bar

Since the semicolon was not present at parsing time, it is taken literally and does not
work as a command separator. Therefore »echo« is called with the five arguments
»foo.1«, »foo.2«, »;«, »cat«, and »bar«.

Similarly, single/double quotes or backslashes count as quoting characters only if they are detected
at parsing time, not when they are the result of parameter or command substitution:

Example:

Consider the command sequence

 $ XYZ='ghi jkl'
 $ cat abc\ def $XYZ

Parameter substitution in the second command produces

 cat abc\ def ghi jkl

The backslash quotes the space before »def«. As $XYZ was not enclosed in double
quotes, the space before »jkl« is subject to blank interpretation; hence cat is invoked
with three arguments »abc def«, »ghi«, and »jkl«.

What happens if we precede the space between »ghi« and »jkl« in the assignment to
$XYZ with a backslash?

 $ XYZ='ghi\ jkl'
 $ cat abc\ def $XYZ

Now parameter substitution produces

 cat abc\ def ghi\ jkl

The first backslash was already present when the »cat« command was parsed, thus is
quotes the following space. The second backslash, however, is the result of parameter
substitution and was not present at parsing time. It is taken literally and does not quote
the following space. So the space before »jkl« is still subject to blank interpretation
and cat is invoked with three arguments »abc def«, »ghi\«, and »jkl«. There is no
way to include quoting in the value of a parameter to compensate for the missing double
quotes around $XYZ.

To force one more run through the parsing/substitution/globbing procedure, the »eval« command
can be used:

Example:

Let us replace »cat« in the previous example by »eval cat«:

 $ XYZ='ghi\ jkl'
 $ eval cat abc\ def $XYZ

As above, parameter substitution produces

 eval cat abc\ def ghi\ jkl

where the first backslash quotes the following space and the second backslash is taken
literally. Thus »eval« is invoked with four arguments »cat«, »abc def«, »ghi\«,
and »jkl«. Now »eval« concatenates its arguments separated by spaces, yielding

 cat abc def ghi\ jkl

This string is parsed once more. At this time, the quoted backslash becomes a quoting
backslash and thus the following space becomes protected, whereas the space after
»abc« is no longer protected. Hence »cat« is called with three arguments »abc«,
»def«, and »ghi jkl«.

3.1.4 Blank interpretation revisited

In Section 3.1.2, we have written that during the blank interpretation phase, spaces, tabs and
newlines are interpreted as separators between words. This is indeed the default behaviour, but it
can be changed: The characters at which the input is split are exactly those found in the value of the
shell parameter $IFS (IFS = Internal Field Separators). For instance in the command sequence

 $ A='a:b:c d'
 $ echo $A
 a:b:c d

»echo« is invoked with the two arguments »a:b:c« and »d«. Now let's change $IFS from its
default value (a string consisting of a space, a tab, and a newline) to a colon, i.e.,

 $ A='a:b:c d'
 $ IFS=:
 $ echo $A
 a b c d

Then the value of $A, i.e., »a:b:c d« is split no longer at the spaces, but at the colons, thus
»echo« is invoked with three arguments »a«, »b«, and »c d«. In particular, setting IFS=''
prevents blank interpretation completely.

See Sect. 3.2.1 for differences between bash, ksh and sh.

3.1.5 Disabling filename generation

The »-f« option to the »set« command makes it possible to disable filename generation:

 $ echo *
 bar foo.1 foo.2
 $ set -f
 $ echo *
 *

Using the command

 $ set +f

the default behaviour can be restored.

This feature was added to the Bourne shell in System III; almost all Bourne shells used today
support it. It is particularly useful in situations, where we want blank interpretation (so that

enclosing a certain parameter in double quotes is not a solution) but nevertheless want to prevent
filename generation.

3.1.6 Assignments, case commands, indirection

There are some particular situations in which neither blank interpretation nor filename generation
occurs: in assignments, between the keywords »case« and »in« of case commands, and after
input/output redirection operators such as »<« or »>>«. Note that in all these cases the shell syntax
allows only a single word, not a sequence of words, so that blank interpretation or expansion of
globbing characters might result in something syntactically illegal. Double quotes around
parameters or backquoted commands serve only to prevent blank interpretation and filename
generation, hence they are unnecessary in the situations mentioned above. For instance, the double
quotes in the following three examples may be omitted:

 case "$A" in ...

 D="$A/$B/$C"

 cat result > "`date`"

On the other hand, quotes remain necessary if, say, the value after »=« contains literal whitespace
(which is detected already at parsing time, not during blank interpretation):

 D="$A $B $C"

See Sect. 3.2.1 for differences between bash, ksh and sh.

3.1.7 The list of positional parameters: $* and $@

In the Bourne shell, the positional parameters can be accessed individually as $1, $2, To access
the whole list of positional parameters, the two special parameters $* and $@ are available. Outside
of double quotes, these two are equivalent: Both expand to the list of positional parameters starting
with $1 (separated by spaces). Within double quotes, however, they differ: $* within a pair of
double quotes is equivalent to the list of positional parameters, separated by quoted spaces, i.e.,
"$1 $2 ...". On the other hand, $@ within a pair of double quotes is equivalent to the list of
positional parameters, separated by unquoted spaces, i.e., "$1" "$2" (This is the
behaviour if $IFS has its default value (space, tab, newline). If $IFS has a non-standard value, the
evaluation of $*, $@, "$*", and "$@" is highly obscure, non-intuitive, badly documented, and
varying between different shells. Avoid it.)

What happens if the list of positional parameters is empty (i.e., $# equals 0)? As one should expect,
$* and $@ expand to nothing and "$*" expands to one empty argument. The question is: what
should "$@" be? Originally, it expanded to one empty argument, just as "$*". But this is
somewhat inconsistent: it contradicts the usual rule that "$@" yields exactly the list of all positional
parameters originally passed to the current program, i.e., a list whose length equals $#. (See Sect.
3.1.8 for a fix.) In most Bourne shells used today, the evaluation of "$@" has been regularized, so
that "$@" behaves in the way a programmer expects: it expands to the list of all positional
parameters, and in particular it is expands to nothing if the list of positional parameters is empty.

3.1.8 ${VAR+...}

If the parameter $XYZ is unset or set to the empty string, then $XYZ expands to nothing, but
"$XYZ" expands to an empty argument (just as '' or ""). What can we do, if we want to have the
usual effect of double quotes (i.e., no blank interpretation, no filename generation), except that an
unset parameter should expand to nothing?

The ${VAR+...} construct can be used to solve our problem. Generally, ${XYZ+word} is
evaluated to »word«, if the parameter $XYZ is set, and to nothing, otherwise. In particular, $
{XYZ+"$XYZ"} is evaluated to "$XYZ", if the parameter $XYZ is set, and to nothing, otherwise.
It is also possible to treat a parameter set to the empty string in the same way as an unset parameter;
in this case we have to put a »:« before the plus sign.

Using ${VAR+...} it is also possible to pass the list of all positional parameters to a subprogram
»cmd« in a portable way:

 cmd ${1+"$@"}

expands to nothing, if $# equals 0 (i.e., if $1 is undefined), and otherwise to "$@", that is "$1"
"$2" This works also for shells in which "$@" expands to one empty argument if $# equals
0.

3.1.9 Here documents

A here document

 command <<word
 ...
 ...

is a special type of redirection that instructs the shell to take some part of the current source file as
standard input for »command«. The delimiter »word« is subject to parameter and command
substitution. All lines of the current source up to (and not including) the first following line
containing only »word« constitute the standard input for »command«.

If any part of »word« is quoted, then no additional processing is done on the lines constituting the
here document, hence the output of

 $ A=123
 $ cat <<'qwerty'
 bcd\
 $A
 qwerty

consists of the two lines

 bcd\
 $A

If no part of »word« is quoted, then parameter and command substitution occurs, every newline
preceded by a backslash is removed, and every dollar sign, backquote, or backslash must be quoted
by a backslash, thus

 $ A=123
 $ cat <<qwerty
 bcd\
 $A
 qwerty

produces the output

 bcd123

If the special form »<<-« of the redirection operator is used, then all leading tab characters are
stripped from the input lines (before the input lines are compared with »word«.)

See Sect. 3.2.1 for differences between bash, ksh and sh.

3.1.10 Details of command substitution

When the shell encounters a string between backquotes

 `cmd`

it executes cmd and replaces the backquoted string with the standard output of cmd, with any
trailing newlines deleted. (There is no way to preserve these trailing newlines!)

Quoting inside backquoted commands is somewhat complicated, mainy because the same token is
used to start and to end a backquoted command. As a consequence, to nest backquoted commands,
the backquotes of the inner one have to be escaped using backslashes. Furthermore, backslashes can
be used to quote other backslashes and dollar signs (the latter are in fact redundant). In the
backquoted command is contained within double quotes, a backslash can also be used to quote a
double quote. All these backslashes are removed when the shell reads the backquoted command. All
other backslashes are left intact. (Usually, nested backquoted commands can be avoided using
variable assignments.)

See Sect. 3.2.1 for differences between bash, ksh and sh.

3.1.11 The golden rules of Bourne shell quoting

So, what are the right quotes to use in a shell script? It depends. But for those who prefer an easy
rule to a complicated explanation, there are some rules of thumb that work very well in practice:

• Parameters and backquoted commands that should be interpreted by the shell are enclosed in
double quotes. Single quotes are also protected by double quotes (or by a backslash).

• The proper way to pass the list of all command line arguments to a subprogram is
»some_prg ${1+"$@"}«. (For most newer Bourne shells, »some_prg "$@"« has the
same effect.)

• Everything else that might be maltreated by the shell is protected by single quotes.

For those who know what they are doing:

• If you are absolutely sure that the value of the parameter contains neither blanks nor
globbing characters, you may omit the quotes. This applies for instance to the parameters $
$, $#, $?, and $!. (Never do this for command line arguments!)

• If you really want the value of the parameter or backquoted command to be interpreted as a
list, with embedded blanks as separators (and with expansion of globbing characters), you
must omit the double quotes. (This occurs rather infrequently.) If you want blank
interpretation but no filename generation, use the »set -f« command; if you want
filename generation but no blank interpretation, set the parameter $IFS temporarily to ''.

• If the parameter $XYZ is unset or set to the empty string, then $XYZ expands to nothing, but
"$XYZ" expands to an empty argument (just as '' or ""). If you want to have the usual
effect of double quotes, except that an unset parameter should expand to nothing, use $
{XYZ+"$XYZ"}. If additionally you want an empty parameter to be treated in the same
way as an unset parameter, put a : before the plus sign.

• In assignments and case statements, neither blank interpretation nor filename generation
takes place; thus double quotes around parameters or backquoted commands are redundant.
(In the Bourne shell, the same applies to i/o redirections. Notice, however, that bash and ksh
differ here, hence for portability reasons it is better not to omit the double quotes.)

3.2 Other shells

3.2.1 bash, ksh

Quoting in bash or ksh is similar to Bourne shell quoting. Some differences are due to the fact that
the number of interpretation steps in these shells is significantly larger: Apart from parameter and
command substitution, there is also alias substitution, history substitution (only bash), brace
expansion (only bash), tilde expansion, arithmetic expansion, and process substitution (not on all
Unices). Arithmetic expansion behaves in the same way as parameter and command substitution: it
takes place also within double quotes. The rules for alias substitution and history substitution are
slightly confusing. Consult the manual for details. In bash, both are enabled by default only in
interactive shells.

Both bash and ksh offer an alternative syntax for backquoted commands. Instead of

 `command`

they allow us to write

 $(command).

This form avoids most of the quoting trobles of backquoted commands.

Some further differences:

Both bash and ksh perform blank interpretation only if the argument is non-constant, that is, if it
contains a parameter or backquoted command:

 bash$ IFS=,
 bash$ A='a,b,c,d'
 bash$ set $A
 bash$ echo "$1"
 a
 bash$ set x,y,$A
 bash$ echo "$1"
 x
 bash$ set x,y
 bash$ echo "$1"
 x,y

By contrast, the Bourne shell splits on $IFS even if the argument is constant:

 $ IFS=,
 $ set x,y
 $ echo "$1"
 x

In the Bourne shell, $* within double quotes expands to all positional parameters separated by
quoted spaces. In both bash and ksh, the positional parameters are separated by the first character of
$IFS:

 $ set q w e r t
 $ IFS=,:
 $ echo "$*"
 q w e r t

 bash$ set q w e r t
 bash$ IFS=,:
 bash$ echo "$*"
 q,w,e,r,t

In contrast to the Bourne shell, both bash and ksh perform filename generation after input/output
redirection operators; bash also performs blank interpretation. If the result of (blank interpretation
and) filename generation is more than one word, they produce an error. For instance, if the current
directory contains exactly one file »foobar« whose name matches »foo*«, then in bash or ksh,

 echo > foo*

overwrites »foobar«, whereas the same command in sh creates a new file »foo*«.

Neither bash nor ksh perform parameter or command substitution on the delimiter of a here
document: The output of

 bash$ A=abc
 bash$ cat <<$A
 q
 abc
 $A

consists of the two lines

 q
 abc

In the Bourne shell, line 4 (containing »abc«) would already have terminated the here document.

4 Application quoting
In this context, application means any external command that is called from a shell (and even some
shell built-in commands that behave syntactically like external commands). Application quoting is
application-dependent. There are no general rules: Some techniques are very widely usable, others
are limited to a particular program. In some programs, there is no need at all for a quoting
mechanism, in others, there is need but still no quoting mechanism.

4.1 Options

Most Unix commands distinguish an option from another argument by looking at its first character:
If it starts with a »-«, it's an option, otherwise, it's not. (Some commands use additional characters
besides »-«: occasionally »+«, rarely others. The following paragraphs apply to this case
analogously.) What can we do if we need to persuade a command to consider an argument starting
with »-« as a non-option?

A wide-spread convention is to interpret the special option »--« as the end of the option list and
every further argument as a non-option. This convention is very handy but, unfortunately, there are
still many commands around that do not obey it. One should not even rely on the fact that all
implementations of a certain command behave in the same way. The »rm« command is a well-
known example: Some »rm« implementations interpret »--« as the end of option list, some use
»-« instead (which is a bad idea since »-« commonly denotes standard input), some »rm«
implementations accept both, and some accept neither.

For filenames starting with »-« there is a portable and fairly general way to pass them to a
command without having them misinterpreted as an option. The key idea is to exploit the fact that a
relative filename »foo« denotes the same file as »./foo« (i.e., »foo« in the current directory
».«). Hence, if a filename starts with »-«, it is sufficient to put »./« in front of it to have it
correctly interpreted as a filename:

 $ mv ./-bar baz

If the filename is unknown, say a positional parameter in a script, its first character is most easily
checked with a case statement:

 case $1 in
 -*) FILE=./$1 ;;
 *) FILE=$1 ;;
 esac
 mv "$FILE" /tmp/baz

4.2 test, expr

Both »test« and »expr« suffer from the same problem: under certain circumstances, they cannot
tell operands from operators or parentheses.

Example:

Consider the following two commands:

 test \(-r "$A" \) -o "$B1" = "$C"

 test \("$B2" = "$C" -o -w "$A" \)

Obviously, the programmer's intention was, in the first case, to test whether the file $A
is readable or whether the strings $B1 and $C are equal, and in the second case, to test
whether the strings $B2 and $C are equal or whether the file $A is writable. (In both
cases, the parentheses are in fact redundant. However, we could easily add some more
conditions so that the parentheses become necessary.)

Now let us assume that the parameters are initialized as follows:

 A='='
 B1=-w
 B2=-r
 C=')'

Then in both cases, after the shell has processed the command, »test« is called with
exactly the same arguments:

 (-r =) -o -w =)

So there is absolutely no way for »test« to figure out what the programmer intended.

In fact, implementations of »test« tend to fail even on inputs that can uniquely be parsed.
Therefore two workarounds are recommended:

• A relative filename »foo« denotes the same file as »./foo« (i.e., »foo« in the current
directory ».«). Hence, if a filename might be misinterpreted by »test«, it is sufficient to
put »./« in front of it to have it correctly interpreted as a filename (cf. Sect. 4.1).

• The result of a string comparison »foo = bar« does not change, if both strings are
preceded by the same prefix string, say »xx«. (The same holds for inequality tests.) As no
operator of »test« or »expr« starts with »xx«, this is again safe.

Example:

As we have seen above, the command

 test \(-r "$A" \) -o "$B1" = "$C"

is not safe. To force $A to be interpreted as a filename and $B1 and $C as strings, we
can use

 case $A in
 /*) A0=$A ;; # absolute filename: don't change
 *) A0=./$A ;; # relative filename: prepend »./«
 esac
 test \(-r "$A0" \) -o "xx$B1" = "xx$C"

The »test« command has an alternative syntactic form: The command

 [condition]

is equivalent to

 test condition

and it shares its deficiencies. Even if »[...]« looks as if it were a part of the shell syntax, it is
not: »[« behaves like any other external command (though both »test« and »[« are usually built
into the shell for efficiency reasons).

The »case« control structure does not suffer from the problems of »test«. It is parsed before
parameters are evaluated, hence

 case $A in
 -r) echo 'parameter $A equals -r' ;;
 ')') echo 'parameter $A equals)' ;;
 -p*) echo 'parameter $A starts with -p' ;;
 esac

works even if $A is set to »-r« or »)« or to some strange string like »esac in ;;«. In
situations where both »case« and »test«/»expr« are applicable, »case« is therefore preferred.

Besides the »[« command, bash and ksh offer a »[[...]]« construct. This is similar to
»[...]«, but, just like »case«, it is also parsed before parameters are evaluated and it is
therefore robust.

4.3 set

The »set« command of the Bourne shell has three functions. If is called as

 set options non-option-arguments

where both options and non-option-arguments may be omitted.

• If there are no arguments at all, »set« prints the values of all currently defined parameters
(except special parameters such as $1, $2, $*, $$, $#, ...).

• Options start either with »-« or with »+«. If »set« is called with an option starting with
»-«, it turns on the corresponding option of the current shell. For instance, if

 set -x

is executed in a shell script »foo«, the shell behaves as if it had been invoked by

 sh -x foo ...

Options starting with »+« turn off the corresponding option of the current shell.

• Non-option-arguments are assigned, in order, to the positional parameters. For instance, if

 set abc '' def

is executed in a shell script »foo«, the shell behaves as if it had been invoked by

 sh [options] foo abc '' def

that is, $1 is set to »abc«, $2 to the empty string, $3 to »def«, and all further positional
parameters are unset.

»set« obeys the »--«-convention mentioned above, hence

 set -- "$XYZ"

can be used to set $1 safely to $XYZ, even if the value of $XYZ starts with »-«. There remains
only one problematic case: One might assume that

 set --

unsets all positional parameters. In some Bourne shells, however, it leaves all positional parameters
unchanged. To get the desired effect in a portable way, use a dummy argument and shift it:

 set foobar
 shift

In both bash and ksh, »set --« works as desired.

	Contents
	1 Why is quoting necessary? The levels of interpretation
	2 Terminal interface quoting
	3 Shell quoting
	3.1 Bourne shell
	3.1.1 Which quoting method protects which characters?
	3.1.2 Input interpretation: an overview
	3.1.3 Common misconceptions
	3.1.4 Blank interpretation revisited
	3.1.5 Disabling filename generation
	3.1.6 Assignments, case commands, indirection
	3.1.7 The list of positional parameters: $* and $@
	3.1.8 ${VAR+...}
	3.1.9 Here documents
	3.1.10 Details of command substitution
	3.1.11 The golden rules of Bourne shell quoting

	3.2 Other shells
	3.2.1 bash, ksh

	4 Application quoting
	4.1 Options
	4.2 test, expr
	4.3 set

