Advanced Ozone Data Products

Content

Ozone Profiles

Towards the short wavelength region of GOME, the ozone absorption and Rayleigh scattering increases several order of magnitudes. The shorter the wavelength, the higher the altitude is where the information content of ozone becomes maximum. Using an Optimal Estimation inversion, for instance, ozone profiles can be derived. A-priori information on ozone profiles, for instance, from a monthly ozone climatology, is included to stabilise (or in mathematical terms: regularise) the spectral fit.

This graphics shows an ozone sonde profile (dashed line) from the Meteorological Observatory of the German Weather Service (DWD) at Hohenpeissenberg (49N) together with a GOME profile (solid line) measured the same day (21 March 1997) within 500 km distance from the sonde launch site. The vertical resolution of the GOME profile is about 6 km in the lowermost stratosphere and increases to about 10 km at higher altitudes and in the troposphere (below 10 km altitude). In-situ measurements from the sondes provide ozone concentrations about every 200 m (depending on ascent velocity).

During the period July 1996-June 1997 about 50 collocated measurements from GOME and ozone sondes at Hohenpeissenberg are compared in this figure. Because of the limited vertical resolution of GOME it is better to compare subcolumn amounts (here 10 km wide layers). Good agreement between sondes and GOME observations were confirmed by similar comparisons with other sonde stations in Europe at mid- to high latitudes. The annual dynamic variability is well captured by GOME, however some deviations may be due to different air masses which are probed by both instruments (large GOME ground pixel (960X100 km2) versus in-situ sonde measurements).

An alternative to the above mentioned optimal estimation scheme is a neural network retrieval scheme. This has been developed in collaboration with ZSW Stuttgart. It can be also applied to retrieve total ozone. The major advantage of the neural network is its high speed (no iteration necessary) that makes it suitable for real time applications.

Total Ozone

With the financial support of the European Space Agency (ESA Project GOME Total Ozone Retrieval Development GOTOCORD) a novel total ozone retrieval algorithm will be developed. This algorithm uses the weighting function DOAS approach (WFDOAS). The major difference to standard DOAS is the spectral fitting of weighting functions rather than absorption cross-section. Vertical column densities are directly retrieved avoiding the use of airmass factors (AMF) for slant column density conversion as in the current operational retrieval scheme. The Version 1 of WFDOAS data has now been released.

Scientific Case Studies

Examples for the application of GOME ozone profiles and columns for interpreting dynamic (transport) and chemical changes in ozone are investigations of ozone minihole events and chemical ozone loss in the Arctic polar vortex (see poster presented at the Palermo THESEO2000-SOLVE Science Meeting, 24 September - 29 September 2000).

Contact

If you have any questions or need more information, please contact Mark.Weber@uni-bremen.de.

References

  • K. Bramstedt, K.-U. Eichmann, M. Weber, R. Hoogen, V. Rozanov, and J.P. Burrows, Ozone depletion in the Arctic spring calculated from GOME Ozone Profiles, European Symposium on Atmospheric Measurements from Space, Proc. ESAMS'99, ESA-WPP-161, 225-229, 1999.
  • A. Bracher, M. Weber, K. Bramstedt, S. Tellmann, J. P. Burrows, Long-term global measurements of ozone profiles by GOME validated with SAGE II considering atmospheric dynamics, J. Geophys. Res. 109, D20308, doi 10.1029/2004JD004677, 2004.
  • A. Bracher, M. Weber, K. Bramstedt, M. Coldewey-Egbers, L. N. Lamsal, J. P. Burrows, Global satellite validation of SCIAMACHY O3 columns with GOME WFDOAS, Atmos. Chem. Phys. Discuss. 5, 795-813, 2005.
  • K. Bramstedt, K.-U. Eichmann, M. Weber, V. Rozanov, and J. P. Burrows, GOME ozone profiles: A global validation with HALOE measurements, Adv. Space Res. 29, 1637-1642, 2002.
  • K. Bramstedt, J. Gleason, D. Loyola, W. Thomas, A. Bracher, M. Weber, and J. P. Burrows, Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996-2000, Atmospheric Chemistry and Physics 3, 1409-1419, 2003.
  • H. Bremer, M. von König, A. Kleinböhl, H. Küllmann, K. Künzi, K. Bramstedt, J. P. Burrows, K.-U. Eichmann, M. Weber, A. P. H. Goede, Ozone depletion observed by ASUR during the Arctic Winter 1999/2000, J. Geophys. Res. 107, 8277, doi:10.1029/2001JD000546, 2002.
  • K.V. Chance, J.P. Burrows, D.Perner, and W. Schneider, Satellite measurements of atmospheric ozone profiles from ultravisible measurements in the nadir geometry: a potential method to retrieve tropospheric ozone, J. Quant. Spectrosc. Radiat. Transfer 57, 467-476, 1997.
  • M. Coldewey-Egbers, M., M. Weber, M. Buchwitz, and J.P. Burrows, Application of a modified DOAS method for total ozone retrieval from GOME data at high polar latitudes, Adv. Space Res. 34, 749-753, 2004.
  • M. Coldewey-Egbers, M. Weber, L. N. Lamsal, R. de Beek, M. Buchwitz, J. P. Burrows, Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach, Atmos. Chem. Phys. 5, 5015-5025, 2005.
  • R. de Beek, M. Weber, V.V. Rozanov, A. Rozanov, A. Richter, and J.P. Burrows, Trace gas column retrieval - An error study for GOME-2, Adv. Space Res. 34, 727-733, 2004.
  • K.-U. Eichmann, K. Bramstedt, M. Weber, R. Hoogen, V.V. Rozanov, and J.P. Burrows, Structure of ozone mini-holes from GOME, European Symposium on Atmospheric Measurements from Space, Proc. ESAMS'99, ESA-WPP-161, 231-236, 1999.
  • K.-U. Eichmann, K. Bramstedt, M. Weber, V.V. Rozanov, R. Hoogen and J.P. Burrows, O3 profiles from GOME satellite data - II: Observations in the Arctic spring 1997 and 1998, Physics and Chemistry of the Earth 24, 453-457, 1999.
  • K.-U. Eichmann, M. Weber, K. Bramstedt, and J.P. Burrows, Ozone depletionin the NH winter/spring 1999/2000 as measured by GOME-ERS2, J. Geophys. Res. 107, 8280, doi:10.1029/2001JD001148, 2002.
  • G. Hansen, K. Bramstedt, V. Rozanov, M. Weber, and J.P. Burrows, Validation of GOME ozone profiles by means of the ALOMAR ozone lidar, Annales Geophysicae 21, 1879-1886, 2003.
  • R. Hoogen, V.V. Rozanov, J.P. Burrows, Ozone Profiles from GOME Satellite Data: Algorithm Description and First Validation, J. Geophys. Res., 104, 8263-8280, 1999.
  • R. Hoogen, V.V. Rozanov, K. Bramstedt, K.-U. Eichmann, M. Weber, and J.P. Burrows, Ozone profiles from GOME satellite data-I: Comparison with ozonesonde measurements, Physics and Chemistry of the Earth 24, 447-452, 1999.
  • L.N. Lamsal, M. Weber, S. Tellmann, and J. P. Burrows, Ozone column classified climatology of ozone and temperature profiles based on ozonesonde and satellite data, J. Geophys. Res., 109, D20304, doi:10.1029/2004JD004680, 2004.
  • M.D. Müller, A. Kaifel, M. Weber, J.P. Burrows, A new method for retrieving total ozone from GOME data, Appl. Opt. 41, 5051-5058, 2002.
  • M.D. Müller, A.K. Kaifel, M. Weber, S. Tellmann, J.P. Burrows, D. Loyola, Ozone profile retrieval from GOME data using a neural network approach (NNORSY), J. Geophys. Res. 108, 4497, doi:10.1029/2002JD002784, 2003.
  • A. Richter, F. Wittrock, M. Weber, S. Beirle, S. K¿l, U. Platt, T. Wagner, W. Wilms-Grabe, and J. P. Burrows, GOME observations of stratospheric trace gas distributions during the splitting vortex event in the Antarctic winter 2002 Part I: Measurements, J. Atmos. Sci. 62, 778-785, 2005
  • C. von Savigny, A. Rozanov, H. Bovensmann, K.-U. Eichmann, S. Noel, V. V. Rozanov, B.-M. Sinnhuber, M. Weber, J. P. Burrows, J. Kaiser, The ozone hole break-up in September 2002 as seen by SCIAMACHY on ENVISAT, J. Atmos. Sci., accepted, 2004.
  • B.-M. Sinnhuber, M. Weber, A. Amankwah, and J.P. Burrows, Total ozone during the unusual Antarctic winter of 2002, Geophys. Res. Lett. 30, 1850, doi:10.1029/2002GL016798, 2003.
  • S. Tellmann, S., V.V. Rozanov, M. Weber, and J.P. Burrows, Improvements in the tropical ozone profile retrieval from GOME UV/vis nadir spectra, Adv. Space Res. 34, 739-743, 2004.
  • M. Weber, K.-U. Eichmann, F. Wittrock, K. Bramstedt, L. Hild, A. Richter, J.P. Burrows, and R. Müller, The cold Arctic winter 1995/96 as observed by the Global Ozone Monitoring experiment GOME and HALOE: Tropospheric wave activity and chemical ozone loss, Q. J. Roy. Meteor. Soc. 128, 1293-1319, 2002.
  • M. Weber, S. Dhomse, F. Wittrock, A. Richter, B.-M. Sinnhuber, and J.P. Burrows, Dynamical Control of NH and SH Winter/Spring Total Ozone from GOME Observations in 1995-2002, Geophys. Res. Lett., 30, 1853, doi:10.1029/2002GL016799, 2003.
  • M. Weber, L. N. Lamsal, M. Coldewey-Egbers, K. Bramstedt, J. P. Burrows, Pole-to-pole validation of GOME WFDOAS total ozone with groundbased data, Atmos. Chem. Phys. 5, 1341-1355, 2005.

Recent Projects

last change: 2005/06/13   Author: Mark Weber
Institute of Environmental Physics, University of Bremen